Learn more

Refine search


Results (30 matches)

  displayed columns for results
Label Class Base field Conductor norm Rank Torsion CM Sato-Tate Regulator Period Leading coeff j-invariant Weierstrass coefficients Weierstrass equation
576.3-a1 576.3-a \(\Q(\sqrt{33}) \) \( 2^{6} \cdot 3^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $13.68670407$ 1.191274681 \( -16848 a + 58752 \) \( \bigl[0\) , \( 0\) , \( 0\) , \( -3 a - 12\) , \( -3 a - 3\bigr] \) ${y}^2={x}^{3}+\left(-3a-12\right){x}-3a-3$
576.3-a2 576.3-a \(\Q(\sqrt{33}) \) \( 2^{6} \cdot 3^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $4.562234692$ 1.191274681 \( -155578800 a + 524686128 \) \( \bigl[0\) , \( -a - 1\) , \( 0\) , \( 28 a - 92\) , \( 147 a - 496\bigr] \) ${y}^2={x}^{3}+\left(-a-1\right){x}^{2}+\left(28a-92\right){x}+147a-496$
576.3-a3 576.3-a \(\Q(\sqrt{33}) \) \( 2^{6} \cdot 3^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $13.68670407$ 1.191274681 \( 16848 a + 41904 \) \( \bigl[0\) , \( 0\) , \( 0\) , \( -1797 a - 4263\) , \( 69657 a + 165246\bigr] \) ${y}^2={x}^{3}+\left(-1797a-4263\right){x}+69657a+165246$
576.3-a4 576.3-a \(\Q(\sqrt{33}) \) \( 2^{6} \cdot 3^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $4.562234692$ 1.191274681 \( 155578800 a + 369107328 \) \( \bigl[0\) , \( -a - 1\) , \( 0\) , \( 1454 a - 4897\) , \( 50298 a - 169622\bigr] \) ${y}^2={x}^{3}+\left(-a-1\right){x}^{2}+\left(1454a-4897\right){x}+50298a-169622$
576.3-b1 576.3-b \(\Q(\sqrt{33}) \) \( 2^{6} \cdot 3^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $4.187165905$ 2.186676077 \( \frac{38912}{27} a - \frac{131072}{27} \) \( \bigl[0\) , \( a + 1\) , \( 0\) , \( 87 a + 207\) , \( 13071 a + 31008\bigr] \) ${y}^2={x}^{3}+\left(a+1\right){x}^{2}+\left(87a+207\right){x}+13071a+31008$
576.3-b2 576.3-b \(\Q(\sqrt{33}) \) \( 2^{6} \cdot 3^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $4.187165905$ 2.186676077 \( -\frac{126738464}{9} a + \frac{427666096}{9} \) \( \bigl[0\) , \( a + 1\) , \( 0\) , \( -4143 a - 9828\) , \( 232824 a + 552324\bigr] \) ${y}^2={x}^{3}+\left(a+1\right){x}^{2}+\left(-4143a-9828\right){x}+232824a+552324$
576.3-c1 576.3-c \(\Q(\sqrt{33}) \) \( 2^{6} \cdot 3^{2} \) 0 $\mathsf{trivial}$ $\mathrm{SU}(2)$ $1$ $1.775052230$ 0.926990794 \( -93184 a - 221184 \) \( \bigl[0\) , \( a + 1\) , \( 0\) , \( -923 a - 2189\) , \( -27299 a - 64761\bigr] \) ${y}^2={x}^{3}+\left(a+1\right){x}^{2}+\left(-923a-2189\right){x}-27299a-64761$
576.3-d1 576.3-d \(\Q(\sqrt{33}) \) \( 2^{6} \cdot 3^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $1.975815635$ 2.063672126 \( -\frac{11583}{16} a - \frac{999}{2} \) \( \bigl[0\) , \( 0\) , \( 0\) , \( -492 a - 1167\) , \( -12684 a - 30090\bigr] \) ${y}^2={x}^{3}+\left(-492a-1167\right){x}-12684a-30090$
576.3-d2 576.3-d \(\Q(\sqrt{33}) \) \( 2^{6} \cdot 3^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $5.927446905$ 2.063672126 \( \frac{42964449}{4096} a - \frac{17445543}{512} \) \( \bigl[0\) , \( -a - 1\) , \( 0\) , \( 141 a - 468\) , \( -1484 a + 5000\bigr] \) ${y}^2={x}^{3}+\left(-a-1\right){x}^{2}+\left(141a-468\right){x}-1484a+5000$
576.3-d3 576.3-d \(\Q(\sqrt{33}) \) \( 2^{6} \cdot 3^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $11.85489381$ 2.063672126 \( -\frac{39704429193}{64} a + \frac{16736831295}{8} \) \( \bigl[0\) , \( -a - 1\) , \( 0\) , \( -4882 a - 11581\) , \( 161034 a + 382018\bigr] \) ${y}^2={x}^{3}+\left(-a-1\right){x}^{2}+\left(-4882a-11581\right){x}+161034a+382018$
576.3-d4 576.3-d \(\Q(\sqrt{33}) \) \( 2^{6} \cdot 3^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $3.951631270$ 2.063672126 \( \frac{9185319}{4} a + 5449950 \) \( \bigl[0\) , \( 0\) , \( 0\) , \( -3 a - 48\) , \( -39 a - 39\bigr] \) ${y}^2={x}^{3}+\left(-3a-48\right){x}-39a-39$
576.3-e1 576.3-e \(\Q(\sqrt{33}) \) \( 2^{6} \cdot 3^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $1.456199331$ 1.520950597 \( \frac{29360}{243} a - \frac{136832}{243} \) \( \bigl[0\) , \( -a - 1\) , \( 0\) , \( -10 a - 25\) , \( -106 a - 254\bigr] \) ${y}^2={x}^{3}+\left(-a-1\right){x}^{2}+\left(-10a-25\right){x}-106a-254$
576.3-e2 576.3-e \(\Q(\sqrt{33}) \) \( 2^{6} \cdot 3^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $2.912398663$ 1.520950597 \( -\frac{8211472}{27} a + \frac{38838416}{27} \) \( \bigl[0\) , \( -a - 1\) , \( 0\) , \( -14958 a - 35484\) , \( -1662501 a - 3943920\bigr] \) ${y}^2={x}^{3}+\left(-a-1\right){x}^{2}+\left(-14958a-35484\right){x}-1662501a-3943920$
576.3-f1 576.3-f \(\Q(\sqrt{33}) \) \( 2^{6} \cdot 3^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $1.566074309$ $7.590114827$ 4.138412119 \( 96 a + 240 \) \( \bigl[0\) , \( a + 1\) , \( 0\) , \( 369 a + 876\) , \( 9896 a + 23476\bigr] \) ${y}^2={x}^{3}+\left(a+1\right){x}^{2}+\left(369a+876\right){x}+9896a+23476$
576.3-f2 576.3-f \(\Q(\sqrt{33}) \) \( 2^{6} \cdot 3^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $0.783037154$ $15.18022965$ 4.138412119 \( -3588 a + 16608 \) \( \bigl[0\) , \( a + 1\) , \( 0\) , \( -2 a - 5\) , \( 0\bigr] \) ${y}^2={x}^{3}+\left(a+1\right){x}^{2}+\left(-2a-5\right){x}$
576.3-g1 576.3-g \(\Q(\sqrt{33}) \) \( 2^{6} \cdot 3^{2} \) 0 $\mathsf{trivial}$ $\mathrm{SU}(2)$ $1$ $15.15896031$ 2.638836277 \( -93184 a - 221184 \) \( \bigl[0\) , \( a + 1\) , \( 0\) , \( 5 a - 13\) , \( -35 a + 119\bigr] \) ${y}^2={x}^{3}+\left(a+1\right){x}^{2}+\left(5a-13\right){x}-35a+119$
576.3-h1 576.3-h \(\Q(\sqrt{33}) \) \( 2^{6} \cdot 3^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $0.398149169$ $9.328485208$ 3.879280844 \( 96 a + 240 \) \( \bigl[0\) , \( a + 1\) , \( 0\) , \( a + 4\) , \( 4\bigr] \) ${y}^2={x}^{3}+\left(a+1\right){x}^{2}+\left(a+4\right){x}+4$
576.3-h2 576.3-h \(\Q(\sqrt{33}) \) \( 2^{6} \cdot 3^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $0.199074584$ $18.65697041$ 3.879280844 \( -3588 a + 16608 \) \( \bigl[0\) , \( a + 1\) , \( 0\) , \( 326 a - 1093\) , \( -5364 a + 18092\bigr] \) ${y}^2={x}^{3}+\left(a+1\right){x}^{2}+\left(326a-1093\right){x}-5364a+18092$
576.3-i1 576.3-i \(\Q(\sqrt{33}) \) \( 2^{6} \cdot 3^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $7.418710952$ 1.291431812 \( \frac{38912}{27} a - \frac{131072}{27} \) \( \bigl[0\) , \( a + 1\) , \( 0\) , \( 7 a - 17\) , \( -17 a + 60\bigr] \) ${y}^2={x}^{3}+\left(a+1\right){x}^{2}+\left(7a-17\right){x}-17a+60$
576.3-i2 576.3-i \(\Q(\sqrt{33}) \) \( 2^{6} \cdot 3^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $7.418710952$ 1.291431812 \( -\frac{126738464}{9} a + \frac{427666096}{9} \) \( \bigl[0\) , \( a + 1\) , \( 0\) , \( 97 a - 332\) , \( -944 a + 3156\bigr] \) ${y}^2={x}^{3}+\left(a+1\right){x}^{2}+\left(97a-332\right){x}-944a+3156$
576.3-j1 576.3-j \(\Q(\sqrt{33}) \) \( 2^{6} \cdot 3^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $4.418534733$ 1.538336338 \( -\frac{11583}{16} a - \frac{999}{2} \) \( \bigl[0\) , \( 0\) , \( 0\) , \( -60 a + 201\) , \( 276 a - 930\bigr] \) ${y}^2={x}^{3}+\left(-60a+201\right){x}+276a-930$
576.3-j2 576.3-j \(\Q(\sqrt{33}) \) \( 2^{6} \cdot 3^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $1.472844911$ 1.538336338 \( \frac{42964449}{4096} a - \frac{17445543}{512} \) \( \bigl[0\) , \( -a - 1\) , \( 0\) , \( 413 a + 980\) , \( -5028 a - 11928\bigr] \) ${y}^2={x}^{3}+\left(-a-1\right){x}^{2}+\left(413a+980\right){x}-5028a-11928$
576.3-j3 576.3-j \(\Q(\sqrt{33}) \) \( 2^{6} \cdot 3^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $2.945689822$ 1.538336338 \( -\frac{39704429193}{64} a + \frac{16736831295}{8} \) \( \bigl[0\) , \( -a - 1\) , \( 0\) , \( 54 a - 189\) , \( 406 a - 1362\bigr] \) ${y}^2={x}^{3}+\left(-a-1\right){x}^{2}+\left(54a-189\right){x}+406a-1362$
576.3-j4 576.3-j \(\Q(\sqrt{33}) \) \( 2^{6} \cdot 3^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $8.837069466$ 1.538336338 \( \frac{9185319}{4} a + 5449950 \) \( \bigl[0\) , \( 0\) , \( 0\) , \( 15045 a - 50736\) , \( 905541 a - 3053739\bigr] \) ${y}^2={x}^{3}+\left(15045a-50736\right){x}+905541a-3053739$
576.3-k1 576.3-k \(\Q(\sqrt{33}) \) \( 2^{6} \cdot 3^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $6.955705096$ 2.421665677 \( \frac{29360}{243} a - \frac{136832}{243} \) \( \bigl[0\) , \( -a - 1\) , \( 0\) , \( 702 a - 2361\) , \( -29502 a + 99486\bigr] \) ${y}^2={x}^{3}+\left(-a-1\right){x}^{2}+\left(702a-2361\right){x}-29502a+99486$
576.3-k2 576.3-k \(\Q(\sqrt{33}) \) \( 2^{6} \cdot 3^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $13.91141019$ 2.421665677 \( -\frac{8211472}{27} a + \frac{38838416}{27} \) \( \bigl[0\) , \( -a - 1\) , \( 0\) , \( 10 a - 68\) , \( -25 a + 240\bigr] \) ${y}^2={x}^{3}+\left(-a-1\right){x}^{2}+\left(10a-68\right){x}-25a+240$
576.3-l1 576.3-l \(\Q(\sqrt{33}) \) \( 2^{6} \cdot 3^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $8.182060030$ 2.136470746 \( -16848 a + 58752 \) \( \bigl[0\) , \( 0\) , \( 0\) , \( 1797 a - 6060\) , \( 69657 a - 234903\bigr] \) ${y}^2={x}^{3}+\left(1797a-6060\right){x}+69657a-234903$
576.3-l2 576.3-l \(\Q(\sqrt{33}) \) \( 2^{6} \cdot 3^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $24.54618009$ 2.136470746 \( -155578800 a + 524686128 \) \( \bigl[0\) , \( -a - 1\) , \( 0\) , \( -1452 a - 3444\) , \( 51751 a + 122768\bigr] \) ${y}^2={x}^{3}+\left(-a-1\right){x}^{2}+\left(-1452a-3444\right){x}+51751a+122768$
576.3-l3 576.3-l \(\Q(\sqrt{33}) \) \( 2^{6} \cdot 3^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $8.182060030$ 2.136470746 \( 16848 a + 41904 \) \( \bigl[0\) , \( 0\) , \( 0\) , \( 3 a - 15\) , \( -3 a + 6\bigr] \) ${y}^2={x}^{3}+\left(3a-15\right){x}-3a+6$
576.3-l4 576.3-l \(\Q(\sqrt{33}) \) \( 2^{6} \cdot 3^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $24.54618009$ 2.136470746 \( 155578800 a + 369107328 \) \( \bigl[0\) , \( -a - 1\) , \( 0\) , \( -26 a - 65\) , \( 174 a + 414\bigr] \) ${y}^2={x}^{3}+\left(-a-1\right){x}^{2}+\left(-26a-65\right){x}+174a+414$
  displayed columns for results

  *The rank, regulator and analytic order of Ш are not known for all curves in the database; curves for which these are unknown will not appear in searches specifying one of these quantities.