Properties

Label 2.2.281.1-16.4-a2
Base field \(\Q(\sqrt{281}) \)
Conductor norm \( 16 \)
CM no
Base change no
Q-curve no
Torsion order \( 1 \)
Rank \( 1 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field \(\Q(\sqrt{281}) \)

Generator \(a\), with minimal polynomial \( x^{2} - x - 70 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([-70, -1, 1]))
 
gp: K = nfinit(Polrev([-70, -1, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-70, -1, 1]);
 

Weierstrass equation

\({y}^2+a{y}={x}^{3}-a{x}^{2}+\left(-2a+5\right){x}-2a-13\)
sage: E = EllipticCurve([K([0,0]),K([0,-1]),K([0,1]),K([5,-2]),K([-13,-2])])
 
gp: E = ellinit([Polrev([0,0]),Polrev([0,-1]),Polrev([0,1]),Polrev([5,-2]),Polrev([-13,-2])], K);
 
magma: E := EllipticCurve([K![0,0],K![0,-1],K![0,1],K![5,-2],K![-13,-2]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((25a-222)\) = \((a+8)^{4}\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 16 \) = \(2^{4}\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((-7299a+64826)\) = \((a+8)^{15}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( 32768 \) = \(2^{15}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( -\frac{5689}{8} a - \frac{42005}{8} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(1\)
Generator $\left(2 a + 13 : -9 a - 67 : 1\right)$
Height \(0.83190385718909960590820937636022788494\)
Torsion structure: trivial
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 

BSD invariants

Analytic rank: \( 1 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(1\)
Regulator: \( 0.83190385718909960590820937636022788494 \)
Period: \( 7.4390927333129802948718449300902026778 \)
Tamagawa product: \( 2 \)
Torsion order: \(1\)
Leading coefficient: \( 1.4767260696205685129165750088639832188 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((a+8)\) \(2\) \(2\) \(I_{7}^{*}\) Additive \(-1\) \(4\) \(15\) \(3\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(3\) 3B

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 3.
Its isogeny class 16.4-a consists of curves linked by isogenies of degree 3.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.