Learn more

Refine search


Results (16 matches)

  displayed columns for results
Label Class Base field Conductor norm Rank Torsion CM Sato-Tate Regulator Period Leading coeff j-invariant Weierstrass coefficients Weierstrass equation
162.1-a1 162.1-a \(\Q(\sqrt{7}) \) \( 2 \cdot 3^{4} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $0.708490014$ 1.071136220 \( -\frac{22026189082216125793}{3706040377703682} a - \frac{54626740869226485845}{3706040377703682} \) \( \bigl[a\) , \( -1\) , \( 0\) , \( -60588 a + 160290\) , \( -11487731 a + 30393691\bigr] \) ${y}^2+a{x}{y}={x}^{3}-{x}^{2}+\left(-60588a+160290\right){x}-11487731a+30393691$
162.1-a2 162.1-a \(\Q(\sqrt{7}) \) \( 2 \cdot 3^{4} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $2.833960059$ 1.071136220 \( \frac{4913}{1296} \) \( \bigl[1\) , \( -1\) , \( 0\) , \( 153 a + 405\) , \( 35698 a + 94448\bigr] \) ${y}^2+{x}{y}={x}^{3}-{x}^{2}+\left(153a+405\right){x}+35698a+94448$
162.1-a3 162.1-a \(\Q(\sqrt{7}) \) \( 2 \cdot 3^{4} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $0.177122503$ 1.071136220 \( \frac{22026189082216125793}{3706040377703682} a - \frac{54626740869226485845}{3706040377703682} \) \( \bigl[1\) , \( -1\) , \( 0\) , \( 60588 a + 160290\) , \( -11487731 a - 30393691\bigr] \) ${y}^2+{x}{y}={x}^{3}-{x}^{2}+\left(60588a+160290\right){x}-11487731a-30393691$
162.1-a4 162.1-a \(\Q(\sqrt{7}) \) \( 2 \cdot 3^{4} \) 0 $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $0.708490014$ 1.071136220 \( -\frac{15840177853915205}{86093442} a + \frac{20954710660855016}{43046721} \) \( \bigl[1\) , \( -1\) , \( 0\) , \( -20457 a - 54135\) , \( -1643612 a - 4348600\bigr] \) ${y}^2+{x}{y}={x}^{3}-{x}^{2}+\left(-20457a-54135\right){x}-1643612a-4348600$
162.1-a5 162.1-a \(\Q(\sqrt{7}) \) \( 2 \cdot 3^{4} \) 0 $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $2.833960059$ 1.071136220 \( \frac{838561807}{26244} \) \( \bigl[1\) , \( -1\) , \( 0\) , \( -8487 a - 22455\) , \( 675418 a + 1786988\bigr] \) ${y}^2+{x}{y}={x}^{3}-{x}^{2}+\left(-8487a-22455\right){x}+675418a+1786988$
162.1-a6 162.1-a \(\Q(\sqrt{7}) \) \( 2 \cdot 3^{4} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $0.177122503$ 1.071136220 \( -\frac{2350503708439404473473}{13122} a + \frac{6218848268321376696725}{13122} \) \( \bigl[1\) , \( -1\) , \( 0\) , \( -293022 a - 775440\) , \( -140361053 a - 371361301\bigr] \) ${y}^2+{x}{y}={x}^{3}-{x}^{2}+\left(-293022a-775440\right){x}-140361053a-371361301$
162.1-a7 162.1-a \(\Q(\sqrt{7}) \) \( 2 \cdot 3^{4} \) 0 $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $2.833960059$ 1.071136220 \( \frac{15840177853915205}{86093442} a + \frac{20954710660855016}{43046721} \) \( \bigl[a\) , \( -1\) , \( 0\) , \( 20457 a - 54135\) , \( -1643612 a + 4348600\bigr] \) ${y}^2+a{x}{y}={x}^{3}-{x}^{2}+\left(20457a-54135\right){x}-1643612a+4348600$
162.1-a8 162.1-a \(\Q(\sqrt{7}) \) \( 2 \cdot 3^{4} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $2.833960059$ 1.071136220 \( \frac{2350503708439404473473}{13122} a + \frac{6218848268321376696725}{13122} \) \( \bigl[a\) , \( -1\) , \( 0\) , \( 293022 a - 775440\) , \( -140361053 a + 371361301\bigr] \) ${y}^2+a{x}{y}={x}^{3}-{x}^{2}+\left(293022a-775440\right){x}-140361053a+371361301$
162.1-b1 162.1-b \(\Q(\sqrt{7}) \) \( 2 \cdot 3^{4} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $0.177122503$ 1.071136220 \( -\frac{22026189082216125793}{3706040377703682} a - \frac{54626740869226485845}{3706040377703682} \) \( \bigl[1\) , \( -1\) , \( 0\) , \( -60588 a + 160290\) , \( 11487731 a - 30393691\bigr] \) ${y}^2+{x}{y}={x}^{3}-{x}^{2}+\left(-60588a+160290\right){x}+11487731a-30393691$
162.1-b2 162.1-b \(\Q(\sqrt{7}) \) \( 2 \cdot 3^{4} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $2.833960059$ 1.071136220 \( \frac{4913}{1296} \) \( \bigl[a\) , \( -1\) , \( 0\) , \( 153 a + 405\) , \( -35698 a - 94448\bigr] \) ${y}^2+a{x}{y}={x}^{3}-{x}^{2}+\left(153a+405\right){x}-35698a-94448$
162.1-b3 162.1-b \(\Q(\sqrt{7}) \) \( 2 \cdot 3^{4} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $0.708490014$ 1.071136220 \( \frac{22026189082216125793}{3706040377703682} a - \frac{54626740869226485845}{3706040377703682} \) \( \bigl[a\) , \( -1\) , \( 0\) , \( 60588 a + 160290\) , \( 11487731 a + 30393691\bigr] \) ${y}^2+a{x}{y}={x}^{3}-{x}^{2}+\left(60588a+160290\right){x}+11487731a+30393691$
162.1-b4 162.1-b \(\Q(\sqrt{7}) \) \( 2 \cdot 3^{4} \) 0 $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $2.833960059$ 1.071136220 \( -\frac{15840177853915205}{86093442} a + \frac{20954710660855016}{43046721} \) \( \bigl[a\) , \( -1\) , \( 0\) , \( -20457 a - 54135\) , \( 1643612 a + 4348600\bigr] \) ${y}^2+a{x}{y}={x}^{3}-{x}^{2}+\left(-20457a-54135\right){x}+1643612a+4348600$
162.1-b5 162.1-b \(\Q(\sqrt{7}) \) \( 2 \cdot 3^{4} \) 0 $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $2.833960059$ 1.071136220 \( \frac{838561807}{26244} \) \( \bigl[a\) , \( -1\) , \( 0\) , \( -8487 a - 22455\) , \( -675418 a - 1786988\bigr] \) ${y}^2+a{x}{y}={x}^{3}-{x}^{2}+\left(-8487a-22455\right){x}-675418a-1786988$
162.1-b6 162.1-b \(\Q(\sqrt{7}) \) \( 2 \cdot 3^{4} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $2.833960059$ 1.071136220 \( -\frac{2350503708439404473473}{13122} a + \frac{6218848268321376696725}{13122} \) \( \bigl[a\) , \( -1\) , \( 0\) , \( -293022 a - 775440\) , \( 140361053 a + 371361301\bigr] \) ${y}^2+a{x}{y}={x}^{3}-{x}^{2}+\left(-293022a-775440\right){x}+140361053a+371361301$
162.1-b7 162.1-b \(\Q(\sqrt{7}) \) \( 2 \cdot 3^{4} \) 0 $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $0.708490014$ 1.071136220 \( \frac{15840177853915205}{86093442} a + \frac{20954710660855016}{43046721} \) \( \bigl[1\) , \( -1\) , \( 0\) , \( 20457 a - 54135\) , \( 1643612 a - 4348600\bigr] \) ${y}^2+{x}{y}={x}^{3}-{x}^{2}+\left(20457a-54135\right){x}+1643612a-4348600$
162.1-b8 162.1-b \(\Q(\sqrt{7}) \) \( 2 \cdot 3^{4} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $0.177122503$ 1.071136220 \( \frac{2350503708439404473473}{13122} a + \frac{6218848268321376696725}{13122} \) \( \bigl[1\) , \( -1\) , \( 0\) , \( 293022 a - 775440\) , \( 140361053 a - 371361301\bigr] \) ${y}^2+{x}{y}={x}^{3}-{x}^{2}+\left(293022a-775440\right){x}+140361053a-371361301$
  displayed columns for results

  *The rank, regulator and analytic order of Ш are not known for all curves in the database; curves for which these are unknown will not appear in searches specifying one of these quantities.