Base field \(\Q(\sqrt{6}) \)
Generator \(a\), with minimal polynomial \( x^{2} - 6 \); class number \(1\).
Weierstrass equation
This is a global minimal model.
Mordell-Weil group structure
\(\Z \oplus \Z/{6}\Z\)
Mordell-Weil generators
$P$ | $\hat{h}(P)$ | Order |
---|---|---|
$\left(6 : 7 a : 1\right)$ | $2.0502032252215452365570226621791652155$ | $\infty$ |
$\left(7 : 21 : 1\right)$ | $0$ | $6$ |
Invariants
Conductor: | $\frak{N}$ | = | \((14a+42)\) | = | \((-a+2)^{2}\cdot(a+3)\cdot(7)\) |
| |||||
Conductor norm: | $N(\frak{N})$ | = | \( 588 \) | = | \(2^{2}\cdot3\cdot49\) |
| |||||
Discriminant: | $\Delta$ | = | $-21168$ | ||
Discriminant ideal: | $\frak{D}_{\mathrm{min}} = (\Delta)$ | = | \((-21168)\) | = | \((-a+2)^{8}\cdot(a+3)^{6}\cdot(7)^{2}\) |
| |||||
Discriminant norm: | $N(\frak{D}_{\mathrm{min}}) = N(\Delta)$ | = | \( 448084224 \) | = | \(2^{8}\cdot3^{6}\cdot49^{2}\) |
| |||||
j-invariant: | $j$ | = | \( \frac{2048000}{1323} \) | ||
| |||||
Endomorphism ring: | $\mathrm{End}(E)$ | = | \(\Z\) | ||
Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) | ||
| |||||
Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ |
BSD invariants
Analytic rank: | $r_{\mathrm{an}}$ | = | \( 1 \) |
|
|||
Mordell-Weil rank: | $r$ | = | \(1\) |
Regulator: | $\mathrm{Reg}(E/K)$ | ≈ | \( 2.0502032252215452365570226621791652155 \) |
Néron-Tate Regulator: | $\mathrm{Reg}_{\mathrm{NT}}(E/K)$ | ≈ | \( 4.1004064504430904731140453243583304310 \) |
Global period: | $\Omega(E/K)$ | ≈ | \( 4.7974890387035532392272979808542832181 \) |
Tamagawa product: | $\prod_{\frak{p}}c_{\frak{p}}$ | = | \( 36 \) = \(3\cdot( 2 \cdot 3 )\cdot2\) |
Torsion order: | $\#E(K)_{\mathrm{tor}}$ | = | \(6\) |
Special value: | $L^{(r)}(E/K,1)/r!$ | ≈ | \( 4.0154597622194146645336655921254530185 \) |
Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | = | \( 1 \) (rounded) |
BSD formula
$$\begin{aligned}4.015459762 \approx L'(E/K,1) & \overset{?}{=} \frac{ \# ะจ(E/K) \cdot \Omega(E/K) \cdot \mathrm{Reg}_{\mathrm{NT}}(E/K) \cdot \prod_{\mathfrak{p}} c_{\mathfrak{p}} } { \#E(K)_{\mathrm{tor}}^2 \cdot \left|d_K\right|^{1/2} } \\ & \approx \frac{ 1 \cdot 4.797489 \cdot 4.100406 \cdot 36 } { {6^2 \cdot 4.898979} } \\ & \approx 4.015459762 \end{aligned}$$
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 3 primes $\frak{p}$ of bad reduction.
$\mathfrak{p}$ | $N(\mathfrak{p})$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | \(\mathrm{ord}_{\mathfrak{p}}(\mathfrak{N}\)) | \(\mathrm{ord}_{\mathfrak{p}}(\mathfrak{D}_{\mathrm{min}}\)) | \(\mathrm{ord}_{\mathfrak{p}}(\mathrm{den}(j))\) |
---|---|---|---|---|---|---|---|---|
\((-a+2)\) | \(2\) | \(3\) | \(IV^{*}\) | Additive | \(-1\) | \(2\) | \(8\) | \(0\) |
\((a+3)\) | \(3\) | \(6\) | \(I_{6}\) | Split multiplicative | \(-1\) | \(1\) | \(6\) | \(6\) |
\((7)\) | \(49\) | \(2\) | \(I_{2}\) | Split multiplicative | \(-1\) | \(1\) | \(2\) | \(2\) |
Galois Representations
The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.
prime | Image of Galois Representation |
---|---|
\(2\) | 2B |
\(3\) | 3B.1.1 |
Isogenies and isogeny class
This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\)
2, 3 and 6.
Its isogeny class
588.1-a
consists of curves linked by isogenies of
degrees dividing 6.
Base change
This elliptic curve is a \(\Q\)-curve. It is the base change of the following 2 elliptic curves:
Base field | Curve |
---|---|
\(\Q\) | 84.b4 |
\(\Q\) | 4032.t4 |