Properties

Label 2.2.24.1-450.1-d5
Base field \(\Q(\sqrt{6}) \)
Conductor norm \( 450 \)
CM no
Base change no
Q-curve yes
Torsion order \( 6 \)
Rank \( 1 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field \(\Q(\sqrt{6}) \)

Generator \(a\), with minimal polynomial \( x^{2} - 6 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([-6, 0, 1]))
 
gp: K = nfinit(Polrev([-6, 0, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-6, 0, 1]);
 

Weierstrass equation

\({y}^2+{x}{y}={x}^{3}-{x}^{2}+\left(15a-264\right){x}-681a+414\)
sage: E = EllipticCurve([K([1,0]),K([-1,0]),K([0,0]),K([-264,15]),K([414,-681])])
 
gp: E = ellinit([Polrev([1,0]),Polrev([-1,0]),Polrev([0,0]),Polrev([-264,15]),Polrev([414,-681])], K);
 
magma: E := EllipticCurve([K![1,0],K![-1,0],K![0,0],K![-264,15],K![414,-681]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((-15a+30)\) = \((-a+2)\cdot(a+3)^{2}\cdot(-a-1)\cdot(-a+1)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 450 \) = \(2\cdot3^{2}\cdot5\cdot5\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((1306125a+7398000)\) = \((-a+2)\cdot(a+3)^{6}\cdot(-a-1)^{12}\cdot(-a+1)^{3}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( 44494628906250 \) = \(2\cdot3^{6}\cdot5^{12}\cdot5^{3}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( -\frac{59305689907281}{488281250} a + \frac{102611946982248}{244140625} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(1\)
Generator $\left(-\frac{9}{2} a + \frac{19}{6} : -\frac{89}{36} a + \frac{29}{3} : 1\right)$
Height \(1.0972032258924404399265900442888737398\)
Torsion structure: \(\Z/6\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generator: $\left(-7 a + 9 : 26 a - 57 : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 1 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(1\)
Regulator: \( 1.0972032258924404399265900442888737398 \)
Period: \( 3.0256410151763374151439503775473981520 \)
Tamagawa product: \( 72 \)  =  \(1\cdot2\cdot( 2^{2} \cdot 3 )\cdot3\)
Torsion order: \(6\)
Leading coefficient: \( 2.7105588762106606783795993315082418432 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((-a+2)\) \(2\) \(1\) \(I_{1}\) Non-split multiplicative \(1\) \(1\) \(1\) \(1\)
\((a+3)\) \(3\) \(2\) \(I_0^{*}\) Additive \(-1\) \(2\) \(6\) \(0\)
\((-a-1)\) \(5\) \(12\) \(I_{12}\) Split multiplicative \(-1\) \(1\) \(12\) \(12\)
\((-a+1)\) \(5\) \(3\) \(I_{3}\) Split multiplicative \(-1\) \(1\) \(3\) \(3\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2B
\(3\) 3B.1.1

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2, 3, 4, 6 and 12.
Its isogeny class 450.1-d consists of curves linked by isogenies of degrees dividing 12.

Base change

This elliptic curve is a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.