Properties

Label 2.2.24.1-450.1-a4
Base field \(\Q(\sqrt{6}) \)
Conductor norm \( 450 \)
CM no
Base change no
Q-curve no
Torsion order \( 2 \)
Rank \( 1 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field \(\Q(\sqrt{6}) \)

Generator \(a\), with minimal polynomial \( x^{2} - 6 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([-6, 0, 1]))
 
gp: K = nfinit(Polrev([-6, 0, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-6, 0, 1]);
 

Weierstrass equation

\({y}^2+{x}{y}+{y}={x}^{3}+\left(a-1\right){x}^{2}+\left(-8240a-19943\right){x}+627019a+1535299\)
sage: E = EllipticCurve([K([1,0]),K([-1,1]),K([1,0]),K([-19943,-8240]),K([1535299,627019])])
 
gp: E = ellinit([Polrev([1,0]),Polrev([-1,1]),Polrev([1,0]),Polrev([-19943,-8240]),Polrev([1535299,627019])], K);
 
magma: E := EllipticCurve([K![1,0],K![-1,1],K![1,0],K![-19943,-8240],K![1535299,627019]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((-15a+30)\) = \((-a+2)\cdot(a+3)^{2}\cdot(-a-1)\cdot(-a+1)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 450 \) = \(2\cdot3^{2}\cdot5\cdot5\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((21262500a-39487500)\) = \((-a+2)^{4}\cdot(a+3)^{10}\cdot(-a-1)^{8}\cdot(-a+1)^{5}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( -1153300781250000 \) = \(-2^{4}\cdot3^{10}\cdot5^{8}\cdot5^{5}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( \frac{16121263453136683247}{14062500} a + \frac{39488869492259539423}{14062500} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(1\)
Generator $\left(a + 113 : 237 a - 632 : 1\right)$
Height \(0.19825537383542620624887679305967048944\)
Torsion structure: \(\Z/2\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generator: $\left(23 a + \frac{235}{4} : -\frac{23}{2} a - \frac{239}{8} : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 1 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(1\)
Regulator: \( 0.19825537383542620624887679305967048944 \)
Period: \( 1.4388420173374077182946344476746228362 \)
Tamagawa product: \( 160 \)  =  \(2^{2}\cdot2^{2}\cdot2\cdot5\)
Torsion order: \(2\)
Leading coefficient: \( 4.6582462797044144620453917719819409206 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((-a+2)\) \(2\) \(4\) \(I_{4}\) Split multiplicative \(-1\) \(1\) \(4\) \(4\)
\((a+3)\) \(3\) \(4\) \(I_{4}^{*}\) Additive \(-1\) \(2\) \(10\) \(4\)
\((-a-1)\) \(5\) \(2\) \(I_{8}\) Non-split multiplicative \(1\) \(1\) \(8\) \(8\)
\((-a+1)\) \(5\) \(5\) \(I_{5}\) Split multiplicative \(-1\) \(1\) \(5\) \(5\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2B

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2 and 4.
Its isogeny class 450.1-a consists of curves linked by isogenies of degrees dividing 4.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.