Learn more

Refine search


Results (12 matches)

  displayed columns for results
Label Class Base field Conductor norm Rank Torsion CM Sato-Tate Regulator Period Leading coeff j-invariant Weierstrass coefficients Weierstrass equation
392.1-a1 392.1-a \(\Q(\sqrt{6}) \) \( 2^{3} \cdot 7^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $22.75712104$ 4.645277881 \( -\frac{4}{7} \) \( \bigl[a\) , \( -1\) , \( a\) , \( -3\) , \( -1\bigr] \) ${y}^2+a{x}{y}+a{y}={x}^{3}-{x}^{2}-3{x}-1$
392.1-a2 392.1-a \(\Q(\sqrt{6}) \) \( 2^{3} \cdot 7^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $22.75712104$ 4.645277881 \( \frac{3543122}{49} \) \( \bigl[a\) , \( -1\) , \( a\) , \( -13\) , \( 9\bigr] \) ${y}^2+a{x}{y}+a{y}={x}^{3}-{x}^{2}-13{x}+9$
392.1-b1 392.1-b \(\Q(\sqrt{6}) \) \( 2^{3} \cdot 7^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $1.747807462$ $7.189921948$ 2.565146328 \( -\frac{4}{7} \) \( \bigl[a\) , \( -a - 1\) , \( 0\) , \( -2 a - 2\) , \( -100 a - 244\bigr] \) ${y}^2+a{x}{y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(-2a-2\right){x}-100a-244$
392.1-b2 392.1-b \(\Q(\sqrt{6}) \) \( 2^{3} \cdot 7^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $0.873903731$ $7.189921948$ 2.565146328 \( \frac{3543122}{49} \) \( \bigl[a\) , \( a - 1\) , \( 0\) , \( 202 a - 492\) , \( 2280 a - 5584\bigr] \) ${y}^2+a{x}{y}={x}^{3}+\left(a-1\right){x}^{2}+\left(202a-492\right){x}+2280a-5584$
392.1-c1 392.1-c \(\Q(\sqrt{6}) \) \( 2^{3} \cdot 7^{2} \) 0 $\Z/4\Z$ $\mathrm{SU}(2)$ $1$ $24.47471212$ 2.497939845 \( \frac{432}{7} \) \( \bigl[a\) , \( 0\) , \( a\) , \( 5 a + 10\) , \( 52 a + 126\bigr] \) ${y}^2+a{x}{y}+a{y}={x}^{3}+\left(5a+10\right){x}+52a+126$
392.1-c2 392.1-c \(\Q(\sqrt{6}) \) \( 2^{3} \cdot 7^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $6.118678030$ 2.497939845 \( \frac{11090466}{2401} \) \( \bigl[a\) , \( 0\) , \( a\) , \( -295 a - 725\) , \( -3563 a - 8729\bigr] \) ${y}^2+a{x}{y}+a{y}={x}^{3}+\left(-295a-725\right){x}-3563a-8729$
392.1-c3 392.1-c \(\Q(\sqrt{6}) \) \( 2^{3} \cdot 7^{2} \) 0 $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $24.47471212$ 2.497939845 \( \frac{740772}{49} \) \( \bigl[a\) , \( 0\) , \( a\) , \( 95 a - 235\) , \( -695 a + 1701\bigr] \) ${y}^2+a{x}{y}+a{y}={x}^{3}+\left(95a-235\right){x}-695a+1701$
392.1-c4 392.1-c \(\Q(\sqrt{6}) \) \( 2^{3} \cdot 7^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $24.47471212$ 2.497939845 \( \frac{1443468546}{7} \) \( \bigl[a\) , \( 0\) , \( a\) , \( -1495 a - 3665\) , \( 48505 a + 118811\bigr] \) ${y}^2+a{x}{y}+a{y}={x}^{3}+\left(-1495a-3665\right){x}+48505a+118811$
392.1-d1 392.1-d \(\Q(\sqrt{6}) \) \( 2^{3} \cdot 7^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $1.069108576$ $10.54517411$ 2.301282567 \( \frac{432}{7} \) \( \bigl[a\) , \( 0\) , \( 0\) , \( 1\) , \( 0\bigr] \) ${y}^2+a{x}{y}={x}^{3}+{x}$
392.1-d2 392.1-d \(\Q(\sqrt{6}) \) \( 2^{3} \cdot 7^{2} \) $1$ $\Z/4\Z$ $\mathrm{SU}(2)$ $1.069108576$ $10.54517411$ 2.301282567 \( \frac{11090466}{2401} \) \( \bigl[a\) , \( 0\) , \( 0\) , \( -14\) , \( 10\bigr] \) ${y}^2+a{x}{y}={x}^{3}-14{x}+10$
392.1-d3 392.1-d \(\Q(\sqrt{6}) \) \( 2^{3} \cdot 7^{2} \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $2.138217153$ $10.54517411$ 2.301282567 \( \frac{740772}{49} \) \( \bigl[a\) , \( 0\) , \( 0\) , \( -4\) , \( -6\bigr] \) ${y}^2+a{x}{y}={x}^{3}-4{x}-6$
392.1-d4 392.1-d \(\Q(\sqrt{6}) \) \( 2^{3} \cdot 7^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $4.276434307$ $2.636293528$ 2.301282567 \( \frac{1443468546}{7} \) \( \bigl[a\) , \( 0\) , \( 0\) , \( -74\) , \( -286\bigr] \) ${y}^2+a{x}{y}={x}^{3}-74{x}-286$
  displayed columns for results

  *The rank, regulator and analytic order of Ш are not known for all curves in the database; curves for which these are unknown will not appear in searches specifying one of these quantities.