Base field \(\Q(\sqrt{21}) \)
Generator \(a\), with minimal polynomial \( x^{2} - x - 5 \); class number \(1\).
Weierstrass equation
This is a global minimal model.
Mordell-Weil group structure
\(\Z \oplus \Z/{2}\Z\)
Mordell-Weil generators
| $P$ | $\hat{h}(P)$ | Order |
|---|---|---|
| $\left(-\frac{38389}{625} a + \frac{21481}{125} : -\frac{16097254}{15625} a + \frac{9018816}{3125} : 1\right)$ | $7.0630804173983207745902501486731751202$ | $\infty$ |
| $\left(-5 a + 9 : 0 : 1\right)$ | $0$ | $2$ |
Invariants
| Conductor: | $\frak{N}$ | = | \((24)\) | = | \((-a+2)^{2}\cdot(2)^{3}\) |
|
| |||||
| Conductor norm: | $N(\frak{N})$ | = | \( 576 \) | = | \(3^{2}\cdot4^{3}\) |
|
| |||||
| Discriminant: | $\Delta$ | = | $-362797056$ | ||
| Discriminant ideal: | $\frak{D}_{\mathrm{min}} = (\Delta)$ | = | \((-362797056)\) | = | \((-a+2)^{22}\cdot(2)^{11}\) |
|
| |||||
| Discriminant norm: | $N(\frak{D}_{\mathrm{min}}) = N(\Delta)$ | = | \( 131621703842267136 \) | = | \(3^{22}\cdot4^{11}\) |
|
| |||||
| j-invariant: | $j$ | = | \( \frac{207646}{6561} \) | ||
|
| |||||
| Endomorphism ring: | $\mathrm{End}(E)$ | = | \(\Z\) | ||
| Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) | ||
|
| |||||
| Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | ||
BSD invariants
| Analytic rank: | $r_{\mathrm{an}}$ | = | \( 1 \) |
|
|
|||
| Mordell-Weil rank: | $r$ | = | \(1\) |
| Regulator: | $\mathrm{Reg}(E/K)$ | ≈ | \( 7.0630804173983207745902501486731751202 \) |
| Néron-Tate Regulator: | $\mathrm{Reg}_{\mathrm{NT}}(E/K)$ | ≈ | \( 14.126160834796641549180500297346350240 \) |
| Global period: | $\Omega(E/K)$ | ≈ | \( 1.0494342897002097593905588480337875671 \) |
| Tamagawa product: | $\prod_{\frak{p}}c_{\frak{p}}$ | = | \( 4 \) = \(2^{2}\cdot1\) |
| Torsion order: | $\#E(K)_{\mathrm{tor}}$ | = | \(2\) |
| Special value: | $L^{(r)}(E/K,1)/r!$ | ≈ | \( 3.2349662173989668816252073770276474226 \) |
| Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | = | \( 1 \) (rounded) |
BSD formula
$$\begin{aligned}3.234966217 \approx L'(E/K,1) & \overset{?}{=} \frac{ \# ะจ(E/K) \cdot \Omega(E/K) \cdot \mathrm{Reg}_{\mathrm{NT}}(E/K) \cdot \prod_{\mathfrak{p}} c_{\mathfrak{p}} } { \#E(K)_{\mathrm{tor}}^2 \cdot \left|d_K\right|^{1/2} } \\ & \approx \frac{ 1 \cdot 1.049434 \cdot 14.126161 \cdot 4 } { {2^2 \cdot 4.582576} } \\ & \approx 3.234966217 \end{aligned}$$
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 2 primes $\frak{p}$ of bad reduction.
| $\mathfrak{p}$ | $N(\mathfrak{p})$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | \(\mathrm{ord}_{\mathfrak{p}}(\mathfrak{N}\)) | \(\mathrm{ord}_{\mathfrak{p}}(\mathfrak{D}_{\mathrm{min}}\)) | \(\mathrm{ord}_{\mathfrak{p}}(\mathrm{den}(j))\) |
|---|---|---|---|---|---|---|---|---|
| \((-a+2)\) | \(3\) | \(4\) | \(I_{16}^{*}\) | Additive | \(-1\) | \(2\) | \(22\) | \(16\) |
| \((2)\) | \(4\) | \(1\) | \(II^{*}\) | Additive | \(1\) | \(3\) | \(11\) | \(0\) |
Galois Representations
The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.
| prime | Image of Galois Representation |
|---|---|
| \(2\) | 2B |
Isogenies and isogeny class
This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\)
2, 4 and 8.
Its isogeny class
576.1-c
consists of curves linked by isogenies of
degrees dividing 8.
Base change
This elliptic curve is a \(\Q\)-curve.
It is not the base change of an elliptic curve defined over any subfield.