Generator a, with minimal polynomial
x2−x−5; class number 1.
sage:R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([-5, -1, 1]))
gp:K = nfinit(Polrev([-5, -1, 1]));
magma:R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-5, -1, 1]);
y2+axy+(a+1)y=x3+x2+(−23a+62)x−161a+447
sage:E = EllipticCurve([K([0,1]),K([1,0]),K([1,1]),K([62,-23]),K([447,-161])])
gp:E = ellinit([Polrev([0,1]),Polrev([1,0]),Polrev([1,1]),Polrev([62,-23]),Polrev([447,-161])], K);
magma:E := EllipticCurve([K![0,1],K![1,0],K![1,1],K![62,-23],K![447,-161]]);
This is a global minimal model.
sage:E.is_global_minimal_model()
Z/6Z
P | h^(P) | Order |
(−5a+14:23a−65:1) | 0 | 6 |
Conductor: |
N |
= |
(2a+6) |
= |
(2)⋅(a+3) |
sage:E.conductor()
gp:ellglobalred(E)[1]
magma:Conductor(E);
|
Conductor norm: |
N(N) |
= |
28 |
= |
4⋅7 |
sage:E.conductor().norm()
gp:idealnorm(ellglobalred(E)[1])
magma:Norm(Conductor(E));
|
Discriminant: |
Δ |
= |
−21952 |
Discriminant ideal:
|
Dmin=(Δ)
|
= |
(−21952) |
= |
(2)6⋅(a+3)6 |
sage:E.discriminant()
gp:E.disc
magma:Discriminant(E);
|
Discriminant norm:
|
N(Dmin)=N(Δ)
|
= |
481890304 |
= |
46⋅76 |
sage:E.discriminant().norm()
gp:norm(E.disc)
magma:Norm(Discriminant(E));
|
j-invariant: |
j |
= |
219529938375 |
sage:E.j_invariant()
gp:E.j
magma:jInvariant(E);
|
Endomorphism ring: |
End(E) |
= |
Z
|
Geometric endomorphism ring: |
End(EQ) |
= |
Z
(no potential complex multiplication)
|
sage:E.has_cm(), E.cm_discriminant()
magma:HasComplexMultiplication(E);
|
Sato-Tate group: |
ST(E) |
= |
SU(2) |
Analytic rank: |
ran | = |
0
|
sage:E.rank()
magma:Rank(E);
|
Mordell-Weil rank: |
r |
= |
0 |
Regulator:
|
Reg(E/K) |
= |
1
|
Néron-Tate Regulator:
|
RegNT(E/K) |
= |
1
|
Global period: |
Ω(E/K) | ≈ |
7.0277081059000617705423007125374356141 |
Tamagawa product: |
∏pcp | = |
36
= (2⋅3)⋅(2⋅3)
|
Torsion order: |
#E(K)tor | = |
6 |
Special value: |
L(r)(E/K,1)/r! |
≈ | 1.5335716360638936011918161977277412414 |
Analytic order of Ш:
|
Шan | = |
1 (rounded) |
1.533571636≈L(E/K,1)=?#E(K)tor2⋅∣dK∣1/2#Ш(E/K)⋅Ω(E/K)⋅RegNT(E/K)⋅∏pcp≈62⋅4.5825761⋅7.027708⋅1⋅36≈1.533571636
sage:E.local_data()
magma:LocalInformation(E);
This elliptic curve is semistable.
There
are 2 primes p
of bad reduction.
This curve has non-trivial cyclic isogenies of degree d for d=
2, 3 and 6.
Its isogeny class
28.1-a
consists of curves linked by isogenies of
degrees dividing 18.