Base field \(\Q(\sqrt{21}) \)
Generator \(a\), with minimal polynomial \( x^{2} - x - 5 \); class number \(1\).
Weierstrass equation
This is a global minimal model.
Mordell-Weil group structure
\(\Z \oplus \Z/{10}\Z\)
Mordell-Weil generators
$P$ | $\hat{h}(P)$ | Order |
---|---|---|
$\left(-2 a - 2 : 3 : 1\right)$ | $0.97803315729399069964724765124451068499$ | $\infty$ |
$\left(-6 : -9 : 1\right)$ | $0$ | $10$ |
Invariants
Conductor: | $\frak{N}$ | = | \((-22a+44)\) | = | \((-a+2)\cdot(2)\cdot(11)\) |
| |||||
Conductor norm: | $N(\frak{N})$ | = | \( 1452 \) | = | \(3\cdot4\cdot121\) |
| |||||
Discriminant: | $\Delta$ | = | $2737152$ | ||
Discriminant ideal: | $\frak{D}_{\mathrm{min}} = (\Delta)$ | = | \((2737152)\) | = | \((-a+2)^{10}\cdot(2)^{10}\cdot(11)\) |
| |||||
Discriminant norm: | $N(\frak{D}_{\mathrm{min}}) = N(\Delta)$ | = | \( 7492001071104 \) | = | \(3^{10}\cdot4^{10}\cdot121\) |
| |||||
j-invariant: | $j$ | = | \( \frac{10091699281}{2737152} \) | ||
| |||||
Endomorphism ring: | $\mathrm{End}(E)$ | = | \(\Z\) | ||
Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) | ||
| |||||
Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ |
BSD invariants
Analytic rank: | $r_{\mathrm{an}}$ | = | \( 1 \) |
|
|||
Mordell-Weil rank: | $r$ | = | \(1\) |
Regulator: | $\mathrm{Reg}(E/K)$ | ≈ | \( 0.97803315729399069964724765124451068499 \) |
Néron-Tate Regulator: | $\mathrm{Reg}_{\mathrm{NT}}(E/K)$ | ≈ | \( 1.95606631458798139929449530248902136998 \) |
Global period: | $\Omega(E/K)$ | ≈ | \( 5.6797834751487085332217738988653546405 \) |
Tamagawa product: | $\prod_{\frak{p}}c_{\frak{p}}$ | = | \( 100 \) = \(( 2 \cdot 5 )\cdot( 2 \cdot 5 )\cdot1\) |
Torsion order: | $\#E(K)_{\mathrm{tor}}$ | = | \(10\) |
Special value: | $L^{(r)}(E/K,1)/r!$ | ≈ | \( 2.4244079900569790323378286679036296489 \) |
Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | = | \( 1 \) (rounded) |
BSD formula
$$\begin{aligned}2.424407990 \approx L'(E/K,1) & \overset{?}{=} \frac{ \# ะจ(E/K) \cdot \Omega(E/K) \cdot \mathrm{Reg}_{\mathrm{NT}}(E/K) \cdot \prod_{\mathfrak{p}} c_{\mathfrak{p}} } { \#E(K)_{\mathrm{tor}}^2 \cdot \left|d_K\right|^{1/2} } \\ & \approx \frac{ 1 \cdot 5.679783 \cdot 1.956066 \cdot 100 } { {10^2 \cdot 4.582576} } \\ & \approx 2.424407990 \end{aligned}$$
Local data at primes of bad reduction
This elliptic curve is semistable. There are 3 primes $\frak{p}$ of bad reduction.
$\mathfrak{p}$ | $N(\mathfrak{p})$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | \(\mathrm{ord}_{\mathfrak{p}}(\mathfrak{N}\)) | \(\mathrm{ord}_{\mathfrak{p}}(\mathfrak{D}_{\mathrm{min}}\)) | \(\mathrm{ord}_{\mathfrak{p}}(\mathrm{den}(j))\) |
---|---|---|---|---|---|---|---|---|
\((-a+2)\) | \(3\) | \(10\) | \(I_{10}\) | Split multiplicative | \(-1\) | \(1\) | \(10\) | \(10\) |
\((2)\) | \(4\) | \(10\) | \(I_{10}\) | Split multiplicative | \(-1\) | \(1\) | \(10\) | \(10\) |
\((11)\) | \(121\) | \(1\) | \(I_{1}\) | Split multiplicative | \(-1\) | \(1\) | \(1\) | \(1\) |
Galois Representations
The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.
prime | Image of Galois Representation |
---|---|
\(2\) | 2B |
\(5\) | 5B.1.1 |
Isogenies and isogeny class
This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\)
2, 5 and 10.
Its isogeny class
1452.1-i
consists of curves linked by isogenies of
degrees dividing 10.
Base change
This elliptic curve is a \(\Q\)-curve. It is the base change of the following 2 elliptic curves:
Base field | Curve |
---|---|
\(\Q\) | 66.c3 |
\(\Q\) | 9702.a3 |