Properties

Label 2.2.204.1-34.1-c2
Base field \(\Q(\sqrt{51}) \)
Conductor norm \( 34 \)
CM no
Base change yes
Q-curve yes
Torsion order \( 6 \)
Rank \( 1 \)

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Base field \(\Q(\sqrt{51}) \)

Generator \(a\), with minimal polynomial \( x^{2} - 51 \); class number \(2\).

Copy content comment:Define the base number field
 
Copy content sage:R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([-51, 0, 1]))
 
Copy content gp:K = nfinit(Polrev([-51, 0, 1]));
 
Copy content magma:R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-51, 0, 1]);
 

Weierstrass equation

\({y}^2+{x}{y}={x}^3-{x}^2-1017{x}+8883\)
Copy content comment:Define the curve
 
Copy content sage:E = EllipticCurve([K([1,0]),K([-1,0]),K([0,0]),K([-1017,0]),K([8883,0])])
 
Copy content gp:E = ellinit([Polrev([1,0]),Polrev([-1,0]),Polrev([0,0]),Polrev([-1017,0]),Polrev([8883,0])], K);
 
Copy content magma:E := EllipticCurve([K![1,0],K![-1,0],K![0,0],K![-1017,0],K![8883,0]]);
 

This is not a global minimal model: it is minimal at all primes except \((3,a)\). No global minimal model exists.

Copy content comment:Test whether it is a global minimal model
 
Copy content sage:E.is_global_minimal_model()
 

Mordell-Weil group structure

\(\Z \oplus \Z/{6}\Z\)

Mordell-Weil generators

$P$$\hat{h}(P)$Order
$\left(7 : -49 : 1\right)$$3.3757740589607750176980945995908250633$$\infty$
$\left(3 : 75 : 1\right)$$0$$6$

Invariants

Conductor: $\frak{N}$ = \((34,a+17)\) = \((a-7)\cdot(17,a)\)
Copy content comment:Compute the conductor
 
Copy content sage:E.conductor()
 
Copy content gp:ellglobalred(E)[1]
 
Copy content magma:Conductor(E);
 
Conductor norm: $N(\frak{N})$ = \( 34 \) = \(2\cdot17\)
Copy content comment:Compute the norm of the conductor
 
Copy content sage:E.conductor().norm()
 
Copy content gp:idealnorm(ellglobalred(E)[1])
 
Copy content magma:Norm(Conductor(E));
 
Discriminant: $\Delta$ = $35192575602$
Discriminant ideal: $(\Delta)$ = \((35192575602)\) = \((a-7)^{2}\cdot(3,a)^{12}\cdot(17,a)^{12}\)
Copy content comment:Compute the discriminant
 
Copy content sage:E.discriminant()
 
Copy content gp:E.disc
 
Copy content magma:Discriminant(E);
 
Discriminant norm: $N(\Delta)$ = \( 1238517377502485662404 \) = \(2^{2}\cdot3^{12}\cdot17^{12}\)
Copy content comment:Compute the norm of the discriminant
 
Copy content sage:E.discriminant().norm()
 
Copy content gp:norm(E.disc)
 
Copy content magma:Norm(Discriminant(E));
 
Minimal discriminant: $\frak{D}_{\mathrm{min}}$ = \((48275138)\) = \((a-7)^{2}\cdot(17,a)^{12}\)
Minimal discriminant norm: $N(\frak{D}_{\mathrm{min}})$ = \( 2330488948919044 \) = \(2^{2}\cdot17^{12}\)
j-invariant: $j$ = \( \frac{159661140625}{48275138} \)
Copy content comment:Compute the j-invariant
 
Copy content sage:E.j_invariant()
 
Copy content gp:E.j
 
Copy content magma:jInvariant(E);
 
Endomorphism ring: $\mathrm{End}(E)$ = \(\Z\)   
Geometric endomorphism ring: $\mathrm{End}(E_{\overline{\Q}})$ = \(\Z\)    (no potential complex multiplication)
Copy content comment:Test for Complex Multiplication
 
Copy content sage:E.has_cm(), E.cm_discriminant()
 
Copy content magma:HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{ST}(E)$ = $\mathrm{SU}(2)$

BSD invariants

Analytic rank: $r_{\mathrm{an}}$= \( 1 \)
Copy content comment:Compute the Mordell-Weil rank
 
Copy content sage:E.rank()
 
Copy content magma:Rank(E);
 
Mordell-Weil rank: $r$ = \(1\)
Regulator: $\mathrm{Reg}(E/K)$ \( 3.3757740589607750176980945995908250633 \)
Néron-Tate Regulator: $\mathrm{Reg}_{\mathrm{NT}}(E/K)$ \( 6.7515481179215500353961891991816501266 \)
Global period: $\Omega(E/K)$ \( 3.4751486449023603328287100142976335243 \)
Tamagawa product: $\prod_{\frak{p}}c_{\frak{p}}$= \( 24 \)  =  \(2\cdot1\cdot( 2^{2} \cdot 3 )\)
Torsion order: $\#E(K)_{\mathrm{tor}}$= \(6\)
Special value: $L^{(r)}(E/K,1)/r!$ \( 1.0951419373007945106143767719585003847 \)
Analytic order of Ш: Ш${}_{\mathrm{an}}$= \( 1 \) (rounded)

BSD formula

$$\begin{aligned}1.095141937 \approx L'(E/K,1) & \overset{?}{=} \frac{ \# ะจ(E/K) \cdot \Omega(E/K) \cdot \mathrm{Reg}_{\mathrm{NT}}(E/K) \cdot \prod_{\mathfrak{p}} c_{\mathfrak{p}} } { \#E(K)_{\mathrm{tor}}^2 \cdot \left|d_K\right|^{1/2} } \\ & \approx \frac{ 1 \cdot 3.475149 \cdot 6.751548 \cdot 24 } { {6^2 \cdot 14.282857} } \\ & \approx 1.095141937 \end{aligned}$$

Local data at primes of bad reduction

Copy content comment:Compute the local reduction data at primes of bad reduction
 
Copy content sage:E.local_data()
 
Copy content magma:LocalInformation(E);
 

This elliptic curve is semistable. There are 2 primes $\frak{p}$ of bad reduction. Primes of good reduction for the curve but which divide the discriminant of the model above (if any) are included.

$\mathfrak{p}$ $N(\mathfrak{p})$ Tamagawa number Kodaira symbol Reduction type Root number \(\mathrm{ord}_{\mathfrak{p}}(\mathfrak{N}\)) \(\mathrm{ord}_{\mathfrak{p}}(\mathfrak{D}_{\mathrm{min}}\)) \(\mathrm{ord}_{\mathfrak{p}}(\mathrm{den}(j))\)
\((a-7)\) \(2\) \(2\) \(I_{2}\) Non-split multiplicative \(1\) \(1\) \(2\) \(2\)
\((3,a)\) \(3\) \(1\) \(I_0\) Good \(1\) \(0\) \(0\) \(0\)
\((17,a)\) \(17\) \(12\) \(I_{12}\) Split multiplicative \(-1\) \(1\) \(12\) \(12\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2B
\(3\) 3B.1.1

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2, 3 and 6.
Its isogeny class 34.1-c consists of curves linked by isogenies of degrees dividing 6.

Base change

This elliptic curve is a \(\Q\)-curve. It is the base change of the following 2 elliptic curves:

Base field Curve
\(\Q\) 306.a1
\(\Q\) 4624.a1