Learn more

Refine search


Results (36 matches)

  displayed columns for results
Label Class Base field Conductor norm Rank Torsion CM Sato-Tate Regulator Period Leading coeff j-invariant Weierstrass coefficients Weierstrass equation
512.2-a1 512.2-a Q(17)\Q(\sqrt{17}) 29 2^{9} 0 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 11 16.6560451616.65604516 2.019842162 1088a+2816 -1088 a + 2816 [0 \bigl[0 , a -a , 0 0 , a+2 a + 2 , 2a+3] 2 a + 3\bigr] y2=x3ax2+(a+2)x+2a+3{y}^2={x}^{3}-a{x}^{2}+\left(a+2\right){x}+2a+3
512.2-a2 512.2-a Q(17)\Q(\sqrt{17}) 29 2^{9} 0 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 11 16.6560451616.65604516 2.019842162 53387236a+136758060 -53387236 a + 136758060 [0 \bigl[0 , a a , 0 0 , 75a191 75 a - 191 , 546a+1398] -546 a + 1398\bigr] y2=x3+ax2+(75a191)x546a+1398{y}^2={x}^{3}+a{x}^{2}+\left(75a-191\right){x}-546a+1398
512.2-a3 512.2-a Q(17)\Q(\sqrt{17}) 29 2^{9} 0 Z/2ZZ/2Z\Z/2\Z\oplus\Z/2\Z SU(2)\mathrm{SU}(2) 11 33.3120903333.31209033 2.019842162 1008a+17168 1008 a + 17168 [0 \bigl[0 , a a , 0 0 , 5a11 5 a - 11 , 10a+26] -10 a + 26\bigr] y2=x3+ax2+(5a11)x10a+26{y}^2={x}^{3}+a{x}^{2}+\left(5a-11\right){x}-10a+26
512.2-a4 512.2-a Q(17)\Q(\sqrt{17}) 29 2^{9} 0 Z/4Z\Z/4\Z SU(2)\mathrm{SU}(2) 11 16.6560451616.65604516 2.019842162 87515172a+136659620 87515172 a + 136659620 [0 \bigl[0 , a a , 0 0 , 5a+9 -5 a + 9 , 30a+78] -30 a + 78\bigr] y2=x3+ax2+(5a+9)x30a+78{y}^2={x}^{3}+a{x}^{2}+\left(-5a+9\right){x}-30a+78
512.2-b1 512.2-b Q(17)\Q(\sqrt{17}) 29 2^{9} 11 Z/4Z\Z/4\Z SU(2)\mathrm{SU}(2) 0.4954139340.495413934 11.5284372111.52843721 2.770410930 404500a+1037028 -404500 a + 1037028 [0 \bigl[0 , a1 -a - 1 , 0 0 , 136a344 136 a - 344 , 1200a+3072] -1200 a + 3072\bigr] y2=x3+(a1)x2+(136a344)x1200a+3072{y}^2={x}^{3}+\left(-a-1\right){x}^{2}+\left(136a-344\right){x}-1200a+3072
512.2-b2 512.2-b Q(17)\Q(\sqrt{17}) 29 2^{9} 11 Z/2ZZ/2Z\Z/2\Z\oplus\Z/2\Z SU(2)\mathrm{SU}(2) 0.9908278690.990827869 23.0568744323.05687443 2.770410930 240a+2576 240 a + 2576 [0 \bigl[0 , a1 -a - 1 , 0 0 , 11a24 11 a - 24 , 10a+24] -10 a + 24\bigr] y2=x3+(a1)x2+(11a24)x10a+24{y}^2={x}^{3}+\left(-a-1\right){x}^{2}+\left(11a-24\right){x}-10a+24
512.2-b3 512.2-b Q(17)\Q(\sqrt{17}) 29 2^{9} 11 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 0.4954139340.495413934 23.0568744323.05687443 2.770410930 6168a+10976 6168 a + 10976 [0 \bigl[0 , a+1 a + 1 , 0 0 , 1 1 , 0] 0\bigr] y2=x3+(a+1)x2+x{y}^2={x}^{3}+\left(a+1\right){x}^{2}+{x}
512.2-b4 512.2-b Q(17)\Q(\sqrt{17}) 29 2^{9} 11 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 1.9816557391.981655739 5.7642186085.764218608 2.770410930 1335292a+2147084 1335292 a + 2147084 [0 \bigl[0 , a1 -a - 1 , 0 0 , 81a204 81 a - 204 , 568a1456] 568 a - 1456\bigr] y2=x3+(a1)x2+(81a204)x+568a1456{y}^2={x}^{3}+\left(-a-1\right){x}^{2}+\left(81a-204\right){x}+568a-1456
512.2-c1 512.2-c Q(17)\Q(\sqrt{17}) 29 2^{9} 0 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 11 15.1681274115.16812741 1.839405631 23360a+59136 -23360 a + 59136 [0 \bigl[0 , a+1 a + 1 , 0 0 , 5a9 5 a - 9 , 6a14] 6 a - 14\bigr] y2=x3+(a+1)x2+(5a9)x+6a14{y}^2={x}^{3}+\left(a+1\right){x}^{2}+\left(5a-9\right){x}+6a-14
512.2-c2 512.2-c Q(17)\Q(\sqrt{17}) 29 2^{9} 0 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 11 15.1681274115.16812741 1.839405631 414800a+647728 414800 a + 647728 [0 \bigl[0 , a1 -a - 1 , 0 0 , 11a24 11 a - 24 , 510a1308] 510 a - 1308\bigr] y2=x3+(a1)x2+(11a24)x+510a1308{y}^2={x}^{3}+\left(-a-1\right){x}^{2}+\left(11a-24\right){x}+510a-1308
512.2-d1 512.2-d Q(17)\Q(\sqrt{17}) 29 2^{9} 0 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 11 8.0097018608.009701860 1.942638047 184a+560 184 a + 560 [0 \bigl[0 , a -a , 0 0 , a+5 -a + 5 , 2a6] 2 a - 6\bigr] y2=x3ax2+(a+5)x+2a6{y}^2={x}^{3}-a{x}^{2}+\left(-a+5\right){x}+2a-6
512.2-d2 512.2-d Q(17)\Q(\sqrt{17}) 29 2^{9} 0 Z/2ZZ/2Z\Z/2\Z\oplus\Z/2\Z SU(2)\mathrm{SU}(2) 11 16.0194037216.01940372 1.942638047 1092a+5588 -1092 a + 5588 [0 \bigl[0 , a+1 -a + 1 , 0 0 , 9a12 -9 a - 12 , 8a12] -8 a - 12\bigr] y2=x3+(a+1)x2+(9a12)x8a12{y}^2={x}^{3}+\left(-a+1\right){x}^{2}+\left(-9a-12\right){x}-8a-12
512.2-d3 512.2-d Q(17)\Q(\sqrt{17}) 29 2^{9} 0 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 11 8.0097018608.009701860 1.942638047 10297338a+26411786 -10297338 a + 26411786 [0 \bigl[0 , a+1 -a + 1 , 0 0 , 59a92 -59 a - 92 , 378a+588] 378 a + 588\bigr] y2=x3+(a+1)x2+(59a92)x+378a+588{y}^2={x}^{3}+\left(-a+1\right){x}^{2}+\left(-59a-92\right){x}+378a+588
512.2-d4 512.2-d Q(17)\Q(\sqrt{17}) 29 2^{9} 0 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 11 8.0097018608.009701860 1.942638047 910322a+1430310 910322 a + 1430310 [0 \bigl[0 , a+1 -a + 1 , 0 0 , 124a192 -124 a - 192 , 1012a1580] -1012 a - 1580\bigr] y2=x3+(a+1)x2+(124a192)x1012a1580{y}^2={x}^{3}+\left(-a+1\right){x}^{2}+\left(-124a-192\right){x}-1012a-1580
512.2-e1 512.2-e Q(17)\Q(\sqrt{17}) 29 2^{9} 0 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 11 6.2392806306.239280630 1.513247827 21716a33916 -\frac{217}{16} a - \frac{339}{16} [0 \bigl[0 , 1 1 , 0 0 , 0 0 , 8a+20] -8 a + 20\bigr] y2=x3+x28a+20{y}^2={x}^{3}+{x}^{2}-8a+20
512.2-e2 512.2-e Q(17)\Q(\sqrt{17}) 29 2^{9} 0 Z/4Z\Z/4\Z SU(2)\mathrm{SU}(2) 11 12.4785612612.47856126 1.513247827 15923423112a+40788724032 -\frac{1592342311}{2} a + \frac{4078872403}{2} [0 \bigl[0 , a1 -a - 1 , 0 0 , 104a168 -104 a - 168 , 192a+304] 192 a + 304\bigr] y2=x3+(a1)x2+(104a168)x+192a+304{y}^2={x}^{3}+\left(-a-1\right){x}^{2}+\left(-104a-168\right){x}+192a+304
512.2-e3 512.2-e Q(17)\Q(\sqrt{17}) 29 2^{9} 0 Z/2ZZ/2Z\Z/2\Z\oplus\Z/2\Z SU(2)\mathrm{SU}(2) 11 12.4785612612.47856126 1.513247827 1594954a+4812294 \frac{159495}{4} a + \frac{481229}{4} [0 \bigl[0 , a1 -a - 1 , 0 0 , 69a108 -69 a - 108 , 374a584] -374 a - 584\bigr] y2=x3+(a1)x2+(69a108)x374a584{y}^2={x}^{3}+\left(-a-1\right){x}^{2}+\left(-69a-108\right){x}-374a-584
512.2-e4 512.2-e Q(17)\Q(\sqrt{17}) 29 2^{9} 0 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 11 3.1196403153.119640315 1.513247827 238419147752a+372304135812 \frac{23841914775}{2} a + \frac{37230413581}{2} [0 \bigl[0 , 1 -1 , 0 0 , 768a1968 768 a - 1968 , 7764a19888] 7764 a - 19888\bigr] y2=x3x2+(768a1968)x+7764a19888{y}^2={x}^{3}-{x}^{2}+\left(768a-1968\right){x}+7764a-19888
512.2-f1 512.2-f Q(17)\Q(\sqrt{17}) 29 2^{9} 11 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 0.2358308170.235830817 12.2230737212.22307372 2.796510914 21716a33916 -\frac{217}{16} a - \frac{339}{16} [0 \bigl[0 , a a , 0 0 , 5a7 -5 a - 7 , 50a+78] 50 a + 78\bigr] y2=x3+ax2+(5a7)x+50a+78{y}^2={x}^{3}+a{x}^{2}+\left(-5a-7\right){x}+50a+78
512.2-f2 512.2-f Q(17)\Q(\sqrt{17}) 29 2^{9} 11 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 0.2358308170.235830817 12.2230737212.22307372 2.796510914 15923423112a+40788724032 -\frac{1592342311}{2} a + \frac{4078872403}{2} [0 \bigl[0 , a -a , 0 0 , 90a235 90 a - 235 , 633a+1626] -633 a + 1626\bigr] y2=x3ax2+(90a235)x633a+1626{y}^2={x}^{3}-a{x}^{2}+\left(90a-235\right){x}-633a+1626
512.2-f3 512.2-f Q(17)\Q(\sqrt{17}) 29 2^{9} 11 Z/2ZZ/2Z\Z/2\Z\oplus\Z/2\Z SU(2)\mathrm{SU}(2) 0.4716616350.471661635 24.4461474424.44614744 2.796510914 1594954a+4812294 \frac{159495}{4} a + \frac{481229}{4} [0 \bigl[0 , a -a , 0 0 , 5a15 5 a - 15 , 6a+22] -6 a + 22\bigr] y2=x3ax2+(5a15)x6a+22{y}^2={x}^{3}-a{x}^{2}+\left(5a-15\right){x}-6a+22
512.2-f4 512.2-f Q(17)\Q(\sqrt{17}) 29 2^{9} 11 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 0.9433232700.943323270 12.2230737212.22307372 2.796510914 238419147752a+372304135812 \frac{23841914775}{2} a + \frac{37230413581}{2} [0 \bigl[0 , a -a , 0 0 , 5a55 -5 a - 55 , 90a+54] 90 a + 54\bigr] y2=x3ax2+(5a55)x+90a+54{y}^2={x}^{3}-a{x}^{2}+\left(-5a-55\right){x}+90a+54
512.2-g1 512.2-g Q(17)\Q(\sqrt{17}) 29 2^{9} 11 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 1.1561720551.156172055 9.6503051889.650305188 2.706070181 184a+560 184 a + 560 [0 \bigl[0 , a1 -a - 1 , 0 0 , 5a+8 5 a + 8 , 0] 0\bigr] y2=x3+(a1)x2+(5a+8)x{y}^2={x}^{3}+\left(-a-1\right){x}^{2}+\left(5a+8\right){x}
512.2-g2 512.2-g Q(17)\Q(\sqrt{17}) 29 2^{9} 11 Z/2ZZ/2Z\Z/2\Z\oplus\Z/2\Z SU(2)\mathrm{SU}(2) 0.5780860270.578086027 19.3006103719.30061037 2.706070181 1092a+5588 -1092 a + 5588 [0 \bigl[0 , a+1 a + 1 , 0 0 , 3a4 3 a - 4 , 2a4] 2 a - 4\bigr] y2=x3+(a+1)x2+(3a4)x+2a4{y}^2={x}^{3}+\left(a+1\right){x}^{2}+\left(3a-4\right){x}+2a-4
512.2-g3 512.2-g Q(17)\Q(\sqrt{17}) 29 2^{9} 11 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 1.1561720551.156172055 4.8251525944.825152594 2.706070181 10297338a+26411786 -10297338 a + 26411786 [0 \bigl[0 , a+1 a + 1 , 0 0 , 33a84 33 a - 84 , 140a364] 140 a - 364\bigr] y2=x3+(a+1)x2+(33a84)x+140a364{y}^2={x}^{3}+\left(a+1\right){x}^{2}+\left(33a-84\right){x}+140a-364
512.2-g4 512.2-g Q(17)\Q(\sqrt{17}) 29 2^{9} 11 Z/4Z\Z/4\Z SU(2)\mathrm{SU}(2) 0.2890430130.289043013 19.3006103719.30061037 2.706070181 910322a+1430310 910322 a + 1430310 [0 \bigl[0 , a+1 a + 1 , 0 0 , 8a24 8 a - 24 , 20a+52] -20 a + 52\bigr] y2=x3+(a+1)x2+(8a24)x20a+52{y}^2={x}^{3}+\left(a+1\right){x}^{2}+\left(8a-24\right){x}-20a+52
512.2-h1 512.2-h Q(17)\Q(\sqrt{17}) 29 2^{9} 11 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 0.8183061950.818306195 6.6406082146.640608214 2.635901835 23360a+59136 -23360 a + 59136 [0 \bigl[0 , a+1 -a + 1 , 0 0 , 7a9 -7 a - 9 , 22a34] -22 a - 34\bigr] y2=x3+(a+1)x2+(7a9)x22a34{y}^2={x}^{3}+\left(-a+1\right){x}^{2}+\left(-7a-9\right){x}-22a-34
512.2-h2 512.2-h Q(17)\Q(\sqrt{17}) 29 2^{9} 11 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 1.6366123901.636612390 6.6406082146.640608214 2.635901835 414800a+647728 414800 a + 647728 [0 \bigl[0 , a1 a - 1 , 0 0 , a -a , 4] -4\bigr] y2=x3+(a1)x2ax4{y}^2={x}^{3}+\left(a-1\right){x}^{2}-a{x}-4
512.2-i1 512.2-i Q(17)\Q(\sqrt{17}) 29 2^{9} 11 Z/4Z\Z/4\Z SU(2)\mathrm{SU}(2) 0.3996421170.399642117 14.2494143014.24941430 2.762318808 404500a+1037028 -404500 a + 1037028 [0 \bigl[0 , a1 a - 1 , 0 0 , 4a 4 a , 16] 16\bigr] y2=x3+(a1)x2+4ax+16{y}^2={x}^{3}+\left(a-1\right){x}^{2}+4a{x}+16
512.2-i2 512.2-i Q(17)\Q(\sqrt{17}) 29 2^{9} 11 Z/2ZZ/2Z\Z/2\Z\oplus\Z/2\Z SU(2)\mathrm{SU}(2) 0.7992842350.799284235 28.4988286128.49882861 2.762318808 240a+2576 240 a + 2576 [0 \bigl[0 , a1 a - 1 , 0 0 , a -a , 0] 0\bigr] y2=x3+(a1)x2ax{y}^2={x}^{3}+\left(a-1\right){x}^{2}-a{x}
512.2-i3 512.2-i Q(17)\Q(\sqrt{17}) 29 2^{9} 11 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 1.5985684711.598568471 14.2494143014.24941430 2.762318808 6168a+10976 6168 a + 10976 [0 \bigl[0 , a a , 0 0 , 14a+38 -14 a + 38 , 15a+39] -15 a + 39\bigr] y2=x3+ax2+(14a+38)x15a+39{y}^2={x}^{3}+a{x}^{2}+\left(-14a+38\right){x}-15a+39
512.2-i4 512.2-i Q(17)\Q(\sqrt{17}) 29 2^{9} 11 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 0.3996421170.399642117 14.2494143014.24941430 2.762318808 1335292a+2147084 1335292 a + 2147084 [0 \bigl[0 , a1 a - 1 , 0 0 , 11a20 -11 a - 20 , 26a+40] 26 a + 40\bigr] y2=x3+(a1)x2+(11a20)x+26a+40{y}^2={x}^{3}+\left(a-1\right){x}^{2}+\left(-11a-20\right){x}+26a+40
512.2-j1 512.2-j Q(17)\Q(\sqrt{17}) 29 2^{9} 0 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 11 10.6225541310.62255413 1.288173903 1088a+2816 -1088 a + 2816 [0 \bigl[0 , 1 -1 , 0 0 , 6a15 6 a - 15 , 7a18] 7 a - 18\bigr] y2=x3x2+(6a15)x+7a18{y}^2={x}^{3}-{x}^{2}+\left(6a-15\right){x}+7a-18
512.2-j2 512.2-j Q(17)\Q(\sqrt{17}) 29 2^{9} 0 Z/4Z\Z/4\Z SU(2)\mathrm{SU}(2) 11 21.2451082721.24510827 1.288173903 53387236a+136758060 -53387236 a + 136758060 [0 \bigl[0 , a+1 a + 1 , 0 0 , 15a28 -15 a - 28 , 20a+36] 20 a + 36\bigr] y2=x3+(a+1)x2+(15a28)x+20a+36{y}^2={x}^{3}+\left(a+1\right){x}^{2}+\left(-15a-28\right){x}+20a+36
512.2-j3 512.2-j Q(17)\Q(\sqrt{17}) 29 2^{9} 0 Z/2ZZ/2Z\Z/2\Z\oplus\Z/2\Z SU(2)\mathrm{SU}(2) 11 21.2451082721.24510827 1.288173903 1008a+17168 1008 a + 17168 [0 \bigl[0 , a+1 a + 1 , 0 0 , 5a8 -5 a - 8 , 18a28] -18 a - 28\bigr] y2=x3+(a+1)x2+(5a8)x18a28{y}^2={x}^{3}+\left(a+1\right){x}^{2}+\left(-5a-8\right){x}-18a-28
512.2-j4 512.2-j Q(17)\Q(\sqrt{17}) 29 2^{9} 0 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 11 5.3112770675.311277067 1.288173903 87515172a+136659620 87515172 a + 136659620 [0 \bigl[0 , a+1 a + 1 , 0 0 , 95a148 -95 a - 148 , 848a1324] -848 a - 1324\bigr] y2=x3+(a+1)x2+(95a148)x848a1324{y}^2={x}^{3}+\left(a+1\right){x}^{2}+\left(-95a-148\right){x}-848a-1324
  displayed columns for results

  *The rank, regulator and analytic order of Ш are not known for all curves in the database; curves for which these are unknown will not appear in searches specifying one of these quantities.