Generator a, with minimal polynomial
x2−x−4; class number 1.
sage:R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([-4, -1, 1]))
gp:K = nfinit(Polrev([-4, -1, 1]));
magma:R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-4, -1, 1]);
y2+axy=x3+x2+(−6a−8)x+5a+8
sage:E = EllipticCurve([K([0,1]),K([1,0]),K([0,0]),K([-8,-6]),K([8,5])])
gp:E = ellinit([Polrev([0,1]),Polrev([1,0]),Polrev([0,0]),Polrev([-8,-6]),Polrev([8,5])], K);
magma:E := EllipticCurve([K![0,1],K![1,0],K![0,0],K![-8,-6],K![8,5]]);
This is a global minimal model.
sage:E.is_global_minimal_model()
Z⊕Z/2Z
P | h^(P) | Order |
(0:a+2:1) | 0.45883412381969792641265125870972462092 | ∞ |
(43a+1:−87a−23:1) | 0 | 2 |
Conductor: |
N |
= |
(3a+12) |
= |
(−a+2)4⋅(3) |
sage:E.conductor()
gp:ellglobalred(E)[1]
magma:Conductor(E);
|
Conductor norm: |
N(N) |
= |
144 |
= |
24⋅9 |
sage:E.conductor().norm()
gp:idealnorm(ellglobalred(E)[1])
magma:Norm(Conductor(E));
|
Discriminant: |
Δ |
= |
1599a+396 |
Discriminant ideal:
|
Dmin=(Δ)
|
= |
(1599a+396) |
= |
(−a+2)20⋅(3) |
sage:E.discriminant()
gp:E.disc
magma:Discriminant(E);
|
Discriminant norm:
|
N(Dmin)=N(Δ)
|
= |
−9437184 |
= |
−220⋅9 |
sage:E.discriminant().norm()
gp:norm(E.disc)
magma:Norm(Discriminant(E));
|
j-invariant: |
j |
= |
7681095125a+7682055079 |
sage:E.j_invariant()
gp:E.j
magma:jInvariant(E);
|
Endomorphism ring: |
End(E) |
= |
Z
|
Geometric endomorphism ring: |
End(EQ) |
= |
Z
(no potential complex multiplication)
|
sage:E.has_cm(), E.cm_discriminant()
magma:HasComplexMultiplication(E);
|
Sato-Tate group: |
ST(E) |
= |
SU(2) |
Analytic rank: |
ran | = |
1
|
sage:E.rank()
magma:Rank(E);
|
Mordell-Weil rank: |
r |
= |
1 |
Regulator:
|
Reg(E/K) |
≈ |
0.45883412381969792641265125870972462092
|
Néron-Tate Regulator:
|
RegNT(E/K) |
≈ |
0.917668247639395852825302517419449241840
|
Global period: |
Ω(E/K) | ≈ |
10.041230522034847068511366620133570423 |
Tamagawa product: |
∏pcp | = |
4
= 22⋅1
|
Torsion order: |
#E(K)tor | = |
2 |
Special value: |
L(r)(E/K,1)/r! |
≈ | 2.2348489837483986559902860541349287202 |
Analytic order of Ш:
|
Шan | = |
1 (rounded) |
2.234848984≈L′(E/K,1)=?#E(K)tor2⋅∣dK∣1/2#Ш(E/K)⋅Ω(E/K)⋅RegNT(E/K)⋅∏pcp≈22⋅4.1231061⋅10.041231⋅0.917668⋅4≈2.234848984
sage:E.local_data()
magma:LocalInformation(E);
This elliptic curve is not semistable.
There
are 2 primes p
of bad reduction.
This curve has non-trivial cyclic isogenies of degree d for d=
2, 4 and 8.
Its isogeny class
144.4-d
consists of curves linked by isogenies of
degrees dividing 8.
This elliptic curve is not a Q-curve.
It is not the base change of an elliptic curve defined over any subfield.