Base field \(\Q(\sqrt{157}) \)
Generator \(a\), with minimal polynomial \( x^{2} - x - 39 \); class number \(1\).
Weierstrass equation
This is a global minimal model.
Mordell-Weil group structure
\(\Z\)
Mordell-Weil generators
$P$ | $\hat{h}(P)$ | Order |
---|---|---|
$\left(a - 7 : 2 a - 14 : 1\right)$ | $0.35025330498191986125218350021637688942$ | $\infty$ |
Invariants
Conductor: | $\frak{N}$ | = | \((2a-15)\) | = | \((-a-6)\cdot(-2a-11)\) |
| |||||
Conductor norm: | $N(\frak{N})$ | = | \( 39 \) | = | \(3\cdot13\) |
| |||||
Discriminant: | $\Delta$ | = | $-61a-264$ | ||
Discriminant ideal: | $\frak{D}_{\mathrm{min}} = (\Delta)$ | = | \((-61a-264)\) | = | \((-a-6)^{3}\cdot(-2a-11)^{3}\) |
| |||||
Discriminant norm: | $N(\frak{D}_{\mathrm{min}}) = N(\Delta)$ | = | \( -59319 \) | = | \(-3^{3}\cdot13^{3}\) |
| |||||
j-invariant: | $j$ | = | \( -\frac{16236544}{59319} a + \frac{7573504}{4563} \) | ||
| |||||
Endomorphism ring: | $\mathrm{End}(E)$ | = | \(\Z\) | ||
Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) | ||
| |||||
Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ |
BSD invariants
Analytic rank: | $r_{\mathrm{an}}$ | = | \( 1 \) |
|
|||
Mordell-Weil rank: | $r$ | = | \(1\) |
Regulator: | $\mathrm{Reg}(E/K)$ | ≈ | \( 0.35025330498191986125218350021637688942 \) |
Néron-Tate Regulator: | $\mathrm{Reg}_{\mathrm{NT}}(E/K)$ | ≈ | \( 0.700506609963839722504367000432753778840 \) |
Global period: | $\Omega(E/K)$ | ≈ | \( 19.977277951954014009642965336705666023 \) |
Tamagawa product: | $\prod_{\frak{p}}c_{\frak{p}}$ | = | \( 3 \) = \(3\cdot1\) |
Torsion order: | $\#E(K)_{\mathrm{tor}}$ | = | \(1\) |
Special value: | $L^{(r)}(E/K,1)/r!$ | ≈ | \( 3.3505798958928737269713660118892658405 \) |
Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | = | \( 1 \) (rounded) |
BSD formula
$$\begin{aligned}3.350579896 \approx L'(E/K,1) & \overset{?}{=} \frac{ \# ะจ(E/K) \cdot \Omega(E/K) \cdot \mathrm{Reg}_{\mathrm{NT}}(E/K) \cdot \prod_{\mathfrak{p}} c_{\mathfrak{p}} } { \#E(K)_{\mathrm{tor}}^2 \cdot \left|d_K\right|^{1/2} } \\ & \approx \frac{ 1 \cdot 19.977278 \cdot 0.700507 \cdot 3 } { {1^2 \cdot 12.529964} } \\ & \approx 3.350579896 \end{aligned}$$
Local data at primes of bad reduction
This elliptic curve is semistable. There are 2 primes $\frak{p}$ of bad reduction.
$\mathfrak{p}$ | $N(\mathfrak{p})$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | \(\mathrm{ord}_{\mathfrak{p}}(\mathfrak{N}\)) | \(\mathrm{ord}_{\mathfrak{p}}(\mathfrak{D}_{\mathrm{min}}\)) | \(\mathrm{ord}_{\mathfrak{p}}(\mathrm{den}(j))\) |
---|---|---|---|---|---|---|---|---|
\((-a-6)\) | \(3\) | \(3\) | \(I_{3}\) | Split multiplicative | \(-1\) | \(1\) | \(3\) | \(3\) |
\((-2a-11)\) | \(13\) | \(1\) | \(I_{3}\) | Non-split multiplicative | \(1\) | \(1\) | \(3\) | \(3\) |
Galois Representations
The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.
prime | Image of Galois Representation |
---|---|
\(3\) | 3Ns |
Isogenies and isogeny class
This curve has no rational isogenies. Its isogeny class 39.2-c consists of this curve only.
Base change
This elliptic curve is not a \(\Q\)-curve.
It is not the base change of an elliptic curve defined over any subfield.