Label
Class
Class size
Class degree
Base field
Field degree
Field signature
Conductor
Conductor norm
Discriminant norm
Root analytic conductor
Bad primes
Rank
Torsion
CM
CM
Sato-Tate
$\Q$-curve
Base change
Semistable
Potentially good
Nonmax $\ell$
mod-$\ell$ images
$Ш_{\textrm{an}}$
Tamagawa
Regulator
Period
Leading coeff
j-invariant
Weierstrass coefficients
Weierstrass equation
39.2-a1
39.2-a
$1$
$1$
\(\Q(\sqrt{157}) \)
$2$
$[2, 0]$
39.2
\( 3 \cdot 13 \)
\( 3^{5} \cdot 13 \)
$2.79804$
$(-a-6), (-2a-11)$
$1$
$\mathsf{trivial}$
$\textsf{no}$
$\mathrm{SU}(2)$
✓
$1$
\( 5 \)
$2.475533218$
$3.347309730$
6.613248349
\( \frac{26222359015}{3159} a - \frac{13645384489}{243} \)
\( \bigl[a + 1\) , \( a\) , \( a + 1\) , \( 15357 a - 103761\) , \( 2589646 a - 17518538\bigr] \)
${y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^{3}+a{x}^{2}+\left(15357a-103761\right){x}+2589646a-17518538$
39.2-b1
39.2-b
$1$
$1$
\(\Q(\sqrt{157}) \)
$2$
$[2, 0]$
39.2
\( 3 \cdot 13 \)
\( 3^{29} \cdot 13^{3} \)
$2.79804$
$(-a-6), (-2a-11)$
$1$
$\mathsf{trivial}$
$\textsf{no}$
$\mathrm{SU}(2)$
✓
$1$
\( 29 \)
$0.555699910$
$2.193832103$
5.643153734
\( \frac{30994677524215436107}{150780939070647951} a - \frac{16201418628140718394}{11598533774665227} \)
\( \bigl[1\) , \( -a\) , \( a + 1\) , \( -382 a - 2189\) , \( 170330 a + 981950\bigr] \)
${y}^2+{x}{y}+\left(a+1\right){y}={x}^{3}-a{x}^{2}+\left(-382a-2189\right){x}+170330a+981950$
39.2-c1
39.2-c
$1$
$1$
\(\Q(\sqrt{157}) \)
$2$
$[2, 0]$
39.2
\( 3 \cdot 13 \)
\( - 3^{3} \cdot 13^{3} \)
$2.79804$
$(-a-6), (-2a-11)$
$1$
$\mathsf{trivial}$
$\textsf{no}$
$\mathrm{SU}(2)$
✓
$3$
3Ns
$1$
\( 3 \)
$0.350253304$
$19.97727795$
3.350579895
\( -\frac{16236544}{59319} a + \frac{7573504}{4563} \)
\( \bigl[0\) , \( 1\) , \( 1\) , \( 139 a - 940\) , \( 1571 a - 10628\bigr] \)
${y}^2+{y}={x}^{3}+{x}^{2}+\left(139a-940\right){x}+1571a-10628$
39.2-d1
39.2-d
$1$
$1$
\(\Q(\sqrt{157}) \)
$2$
$[2, 0]$
39.2
\( 3 \cdot 13 \)
\( 3^{9} \cdot 13^{3} \)
$2.79804$
$(-a-6), (-2a-11)$
$1$
$\mathsf{trivial}$
$\textsf{no}$
$\mathrm{SU}(2)$
✓
$3$
3Ns
$1$
\( 3^{2} \)
$0.103787514$
$10.51848882$
1.568271099
\( -\frac{1059488906}{43243551} a + \frac{466674431}{3326427} \)
\( \bigl[a + 1\) , \( 0\) , \( 0\) , \( 4 a + 34\) , \( 18 a + 111\bigr] \)
${y}^2+\left(a+1\right){x}{y}={x}^{3}+\left(4a+34\right){x}+18a+111$
Download
displayed columns for
results
to
Text
Pari/GP
SageMath
Magma
Oscar
CSV
*The rank, regulator and analytic order of Ш are
not known for all curves in the database; curves for which these are
unknown will not appear in searches specifying one of these
quantities.