Properties

Label 2.2.13.1-1521.3-h1
Base field \(\Q(\sqrt{13}) \)
Conductor norm \( 1521 \)
CM no
Base change no
Q-curve yes
Torsion order \( 1 \)
Rank \( 1 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field \(\Q(\sqrt{13}) \)

Generator \(a\), with minimal polynomial \( x^{2} - x - 3 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([-3, -1, 1]))
 
gp: K = nfinit(Polrev([-3, -1, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-3, -1, 1]);
 

Weierstrass equation

\({y}^2+{x}{y}+{y}={x}^{3}-a{x}^{2}+\left(-114376a-200554\right){x}-34887776a-40972752\)
sage: E = EllipticCurve([K([1,0]),K([0,-1]),K([1,0]),K([-200554,-114376]),K([-40972752,-34887776])])
 
gp: E = ellinit([Polrev([1,0]),Polrev([0,-1]),Polrev([1,0]),Polrev([-200554,-114376]),Polrev([-40972752,-34887776])], K);
 
magma: E := EllipticCurve([K![1,0],K![0,-1],K![1,0],K![-200554,-114376],K![-40972752,-34887776]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((-13a+52)\) = \((-a+1)^{2}\cdot(-2a+1)^{2}\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 1521 \) = \(3^{2}\cdot13^{2}\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((-485537a+656903)\) = \((-a+1)^{6}\cdot(-2a+1)^{8}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( 594667695609 \) = \(3^{6}\cdot13^{8}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( -3387888351672962316333 a - 4413658407915562663495 \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(1\)
Generator $\left(\frac{2234332}{2809} a + \frac{3276378}{2809} : \frac{6523049080}{148877} a + \frac{8490625077}{148877} : 1\right)$
Height \(7.3477999700029725983625697294033991470\)
Torsion structure: trivial
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 

BSD invariants

Analytic rank: \( 1 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(1\)
Regulator: \( 7.3477999700029725983625697294033991470 \)
Period: \( 0.078189691870567592982157824402952835366 \)
Tamagawa product: \( 6 \)  =  \(2\cdot3\)
Torsion order: \(1\)
Leading coefficient: \( 1.9121255143115314581199276254178610772 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((-a+1)\) \(3\) \(2\) \(I_0^{*}\) Additive \(-1\) \(2\) \(6\) \(0\)
\((-2a+1)\) \(13\) \(3\) \(IV^{*}\) Additive \(1\) \(2\) \(8\) \(0\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(3\) 3B.1.2
\(19\) 19B.8.2

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 3, 19 and 57.
Its isogeny class 1521.3-h consists of curves linked by isogenies of degrees dividing 57.

Base change

This elliptic curve is a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.