Properties

Label 2.2.13.1-1521.3-e2
Base field \(\Q(\sqrt{13}) \)
Conductor norm \( 1521 \)
CM no
Base change no
Q-curve yes
Torsion order \( 1 \)
Rank \( 1 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field \(\Q(\sqrt{13}) \)

Generator \(a\), with minimal polynomial \( x^{2} - x - 3 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([-3, -1, 1]))
 
gp: K = nfinit(Polrev([-3, -1, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-3, -1, 1]);
 

Weierstrass equation

\({y}^2+{x}{y}+\left(a+1\right){y}={x}^{3}-a{x}^{2}+\left(-1005a-11530\right){x}+288310a-27456\)
sage: E = EllipticCurve([K([1,0]),K([0,-1]),K([1,1]),K([-11530,-1005]),K([-27456,288310])])
 
gp: E = ellinit([Polrev([1,0]),Polrev([0,-1]),Polrev([1,1]),Polrev([-11530,-1005]),Polrev([-27456,288310])], K);
 
magma: E := EllipticCurve([K![1,0],K![0,-1],K![1,1],K![-11530,-1005],K![-27456,288310]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((-13a+52)\) = \((-a+1)^{2}\cdot(-2a+1)^{2}\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 1521 \) = \(3^{2}\cdot13^{2}\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((-221a+299)\) = \((-a+1)^{6}\cdot(-2a+1)^{2}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( 123201 \) = \(3^{6}\cdot13^{2}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( 3387888351672962316333 a - 7801546759588524979828 \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(1\)
Generator $\left(-\frac{7514}{25} a + \frac{18756}{25} : -\frac{1319413}{125} a + \frac{3016219}{125} : 1\right)$
Height \(7.9425179706494976755447990783746618123\)
Torsion structure: trivial
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 

BSD invariants

Analytic rank: \( 1 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(1\)
Regulator: \( 7.9425179706494976755447990783746618123 \)
Period: \( 0.28191694325206129971073457517173248139 \)
Tamagawa product: \( 2 \)  =  \(2\cdot1\)
Torsion order: \(1\)
Leading coefficient: \( 2.4840921312061201779277285373531970041 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((-a+1)\) \(3\) \(2\) \(I_0^{*}\) Additive \(-1\) \(2\) \(6\) \(0\)
\((-2a+1)\) \(13\) \(1\) \(II\) Additive \(1\) \(2\) \(2\) \(0\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(3\) 3B
\(19\) 19B.8.2

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 3, 19 and 57.
Its isogeny class 1521.3-e consists of curves linked by isogenies of degrees dividing 57.

Base change

This elliptic curve is a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.