Base field \(\Q(\sqrt{3}) \)
Generator \(a\), with minimal polynomial \( x^{2} - 3 \); class number \(1\).
Weierstrass equation
This is a global minimal model.
Mordell-Weil group structure
\(\Z \oplus \Z/{2}\Z \oplus \Z/{2}\Z\)
Mordell-Weil generators
| $P$ | $\hat{h}(P)$ | Order |
|---|---|---|
| $\left(-\frac{4353}{169} a - \frac{3346}{169} : -\frac{78408}{2197} a + \frac{134712}{2197} : 1\right)$ | $3.7595290257583168498767179594028007143$ | $\infty$ |
| $\left(-17 a - 35 : 0 : 1\right)$ | $0$ | $2$ |
| $\left(-21 a - 28 : 0 : 1\right)$ | $0$ | $2$ |
Invariants
| Conductor: | $\frak{N}$ | = | \((40a)\) | = | \((a+1)^{6}\cdot(a)\cdot(5)\) |
|
| |||||
| Conductor norm: | $N(\frak{N})$ | = | \( 4800 \) | = | \(2^{6}\cdot3\cdot25\) |
|
| |||||
| Discriminant: | $\Delta$ | = | $43200$ | ||
| Discriminant ideal: | $\frak{D}_{\mathrm{min}} = (\Delta)$ | = | \((43200)\) | = | \((a+1)^{12}\cdot(a)^{6}\cdot(5)^{2}\) |
|
| |||||
| Discriminant norm: | $N(\frak{D}_{\mathrm{min}}) = N(\Delta)$ | = | \( 1866240000 \) | = | \(2^{12}\cdot3^{6}\cdot25^{2}\) |
|
| |||||
| j-invariant: | $j$ | = | \( \frac{1261112198464}{675} \) | ||
|
| |||||
| Endomorphism ring: | $\mathrm{End}(E)$ | = | \(\Z\) | ||
| Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) | ||
|
| |||||
| Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | ||
BSD invariants
| Analytic rank: | $r_{\mathrm{an}}$ | = | \( 1 \) |
|
|
|||
| Mordell-Weil rank: | $r$ | = | \(1\) |
| Regulator: | $\mathrm{Reg}(E/K)$ | ≈ | \( 3.7595290257583168498767179594028007143 \) |
| Néron-Tate Regulator: | $\mathrm{Reg}_{\mathrm{NT}}(E/K)$ | ≈ | \( 7.5190580515166336997534359188056014286 \) |
| Global period: | $\Omega(E/K)$ | ≈ | \( 0.75962189213591545520883263519742322353 \) |
| Tamagawa product: | $\prod_{\frak{p}}c_{\frak{p}}$ | = | \( 48 \) = \(2^{2}\cdot( 2 \cdot 3 )\cdot2\) |
| Torsion order: | $\#E(K)_{\mathrm{tor}}$ | = | \(4\) |
| Special value: | $L^{(r)}(E/K,1)/r!$ | ≈ | \( 4.9464262935130937154720847914291076027 \) |
| Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | = | \( 1 \) (rounded) |
BSD formula
$$\begin{aligned}4.946426294 \approx L'(E/K,1) & \overset{?}{=} \frac{ \# ะจ(E/K) \cdot \Omega(E/K) \cdot \mathrm{Reg}_{\mathrm{NT}}(E/K) \cdot \prod_{\mathfrak{p}} c_{\mathfrak{p}} } { \#E(K)_{\mathrm{tor}}^2 \cdot \left|d_K\right|^{1/2} } \\ & \approx \frac{ 1 \cdot 0.759622 \cdot 7.519058 \cdot 48 } { {4^2 \cdot 3.464102} } \\ & \approx 4.946426294 \end{aligned}$$
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 3 primes $\frak{p}$ of bad reduction.
| $\mathfrak{p}$ | $N(\mathfrak{p})$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | \(\mathrm{ord}_{\mathfrak{p}}(\mathfrak{N}\)) | \(\mathrm{ord}_{\mathfrak{p}}(\mathfrak{D}_{\mathrm{min}}\)) | \(\mathrm{ord}_{\mathfrak{p}}(\mathrm{den}(j))\) |
|---|---|---|---|---|---|---|---|---|
| \((a+1)\) | \(2\) | \(4\) | \(I_{2}^{*}\) | Additive | \(-1\) | \(6\) | \(12\) | \(0\) |
| \((a)\) | \(3\) | \(6\) | \(I_{6}\) | Split multiplicative | \(-1\) | \(1\) | \(6\) | \(6\) |
| \((5)\) | \(25\) | \(2\) | \(I_{2}\) | Split multiplicative | \(-1\) | \(1\) | \(2\) | \(2\) |
Galois Representations
The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.
| prime | Image of Galois Representation |
|---|---|
| \(2\) | 2Cs |
Isogenies and isogeny class
This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\)
2 and 4.
Its isogeny class
4800.1-j
consists of curves linked by isogenies of
degrees dividing 8.
Base change
This elliptic curve is a \(\Q\)-curve. It is the base change of the following 2 elliptic curves:
| Base field | Curve |
|---|---|
| \(\Q\) | 480.f1 |
| \(\Q\) | 1440.g1 |