Properties

Label 2.2.12.1-3844.1-d1
Base field \(\Q(\sqrt{3}) \)
Conductor norm \( 3844 \)
CM no
Base change yes
Q-curve yes
Torsion order \( 3 \)
Rank \( 2 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field \(\Q(\sqrt{3}) \)

Generator \(a\), with minimal polynomial \( x^{2} - 3 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([-3, 0, 1]))
 
gp: K = nfinit(Polrev([-3, 0, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-3, 0, 1]);
 

Weierstrass equation

\({y}^2={x}^{3}+{x}^{2}-2{x}+1\)
sage: E = EllipticCurve([K([0,0]),K([1,0]),K([0,0]),K([-2,0]),K([1,0])])
 
gp: E = ellinit([Polrev([0,0]),Polrev([1,0]),Polrev([0,0]),Polrev([-2,0]),Polrev([1,0])], K);
 
magma: E := EllipticCurve([K![0,0],K![1,0],K![0,0],K![-2,0],K![1,0]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((62)\) = \((a+1)^{2}\cdot(31)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 3844 \) = \(2^{2}\cdot961\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((-496)\) = \((a+1)^{8}\cdot(31)\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( 246016 \) = \(2^{8}\cdot961\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( -\frac{87808}{31} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(2\)
Generators $\left(\frac{1}{2} a : \frac{1}{4} a - \frac{5}{4} : 1\right)$ $\left(-1 : a : 1\right)$
Heights \(1.2828570053752148696810106000444776148\) \(0.76232631149254059223077180700711307218\)
Torsion structure: \(\Z/3\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generator: $\left(0 : -1 : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 2 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(2\)
Regulator: \( 0.39681424388623184498249800115375062400 \)
Period: \( 24.337717591992533035329490192419670329 \)
Tamagawa product: \( 3 \)  =  \(3\cdot1\)
Torsion order: \(3\)
Leading coefficient: \( 3.7171938844521510342067130074688051235 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((a+1)\) \(2\) \(3\) \(IV^{*}\) Additive \(-1\) \(2\) \(8\) \(0\)
\((31)\) \(961\) \(1\) \(I_{1}\) Split multiplicative \(-1\) \(1\) \(1\) \(1\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(3\) 3B.1.1

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 3.
Its isogeny class 3844.1-d consists of curves linked by isogenies of degree 3.

Base change

This elliptic curve is a \(\Q\)-curve. It is the base change of the following 2 elliptic curves:

Base field Curve
\(\Q\) 124.a1
\(\Q\) 4464.w1