Learn more

Refine search


Results (3 matches)

  displayed columns for results
Label Class Base field Conductor norm Rank Torsion CM Sato-Tate Regulator Period Leading coeff j-invariant Weierstrass coefficients Weierstrass equation
5832.2-a1 5832.2-a \(\Q(\sqrt{-2}) \) \( 2^{3} \cdot 3^{6} \) 0 $\mathsf{trivial}$ $\mathrm{SU}(2)$ $1$ $2.045303597$ 1.446248043 \( \frac{329}{3} a + \frac{920}{3} \) \( \bigl[a\) , \( a\) , \( 0\) , \( -5 a - 2\) , \( 2 a + 17\bigr] \) ${y}^2+a{x}{y}={x}^{3}+a{x}^{2}+\left(-5a-2\right){x}+2a+17$
5832.2-b1 5832.2-b \(\Q(\sqrt{-2}) \) \( 2^{3} \cdot 3^{6} \) $1$ $\mathsf{trivial}$ $\mathrm{SU}(2)$ $0.273777690$ $4.009572881$ 3.104853844 \( \frac{673792}{243} a + \frac{1884160}{243} \) \( \bigl[0\) , \( a + 1\) , \( a\) , \( 3 a - 3\) , \( 2 a - 3\bigr] \) ${y}^2+a{y}={x}^{3}+\left(a+1\right){x}^{2}+\left(3a-3\right){x}+2a-3$
5832.2-c1 5832.2-c \(\Q(\sqrt{-2}) \) \( 2^{3} \cdot 3^{6} \) $1$ $\mathsf{trivial}$ $\mathrm{SU}(2)$ $0.136383579$ $3.911482183$ 3.017716442 \( \frac{18502}{9} a + \frac{13870}{9} \) \( \bigl[a\) , \( a\) , \( 0\) , \( -a - 4\) , \( 3\bigr] \) ${y}^2+a{x}{y}={x}^{3}+a{x}^{2}+\left(-a-4\right){x}+3$
  displayed columns for results

  *The rank, regulator and analytic order of Ш are not known for all curves in the database; curves for which these are unknown will not appear in searches specifying one of these quantities.