Learn more

Refine search


Results (1-50 of 96 matches)

Next   displayed columns for results
Label Class Base field Conductor norm Rank Torsion CM Sato-Tate Regulator Period Leading coeff j-invariant Weierstrass coefficients Weierstrass equation
34848.5-a1 34848.5-a \(\Q(\sqrt{-2}) \) \( 2^{5} \cdot 3^{2} \cdot 11^{2} \) $2$ $\Z/2\Z$ $\mathrm{SU}(2)$ $2.902713371$ $0.709980251$ 5.829018259 \( -\frac{13166140233250}{7780827681} a - \frac{39283810015000}{7780827681} \) \( \bigl[a\) , \( 1\) , \( a\) , \( -85 a - 1\) , \( 295 a - 374\bigr] \) ${y}^2+a{x}{y}+a{y}={x}^{3}+{x}^{2}+\left(-85a-1\right){x}+295a-374$
34848.5-a2 34848.5-a \(\Q(\sqrt{-2}) \) \( 2^{5} \cdot 3^{2} \cdot 11^{2} \) $2$ $\Z/2\Z$ $\mathrm{SU}(2)$ $2.902713371$ $0.709980251$ 5.829018259 \( \frac{13166140233250}{7780827681} a - \frac{39283810015000}{7780827681} \) \( \bigl[a\) , \( 1\) , \( a\) , \( 85 a - 1\) , \( -295 a - 374\bigr] \) ${y}^2+a{x}{y}+a{y}={x}^{3}+{x}^{2}+\left(85a-1\right){x}-295a-374$
34848.5-a3 34848.5-a \(\Q(\sqrt{-2}) \) \( 2^{5} \cdot 3^{2} \cdot 11^{2} \) $2$ $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $0.725678342$ $1.419960502$ 5.829018259 \( -\frac{148877000}{88209} \) \( \bigl[a\) , \( 1\) , \( a\) , \( -21\) , \( -60\bigr] \) ${y}^2+a{x}{y}+a{y}={x}^{3}+{x}^{2}-21{x}-60$
34848.5-a4 34848.5-a \(\Q(\sqrt{-2}) \) \( 2^{5} \cdot 3^{2} \cdot 11^{2} \) $2$ $\Z/2\Z$ $\mathrm{SU}(2)$ $2.902713371$ $1.419960502$ 5.829018259 \( \frac{1643032000}{297} \) \( \bigl[0\) , \( -1\) , \( 0\) , \( -98\) , \( 408\bigr] \) ${y}^2={x}^{3}-{x}^{2}-98{x}+408$
34848.5-b1 34848.5-b \(\Q(\sqrt{-2}) \) \( 2^{5} \cdot 3^{2} \cdot 11^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $0.365288481$ $1.565607194$ 3.235145188 \( \frac{314432}{8019} \) \( \bigl[0\) , \( -1\) , \( 0\) , \( 6\) , \( -36\bigr] \) ${y}^2={x}^{3}-{x}^{2}+6{x}-36$
34848.5-b2 34848.5-b \(\Q(\sqrt{-2}) \) \( 2^{5} \cdot 3^{2} \cdot 11^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $0.730576963$ $1.565607194$ 3.235145188 \( \frac{58411072}{3267} \) \( \bigl[0\) , \( -1\) , \( 0\) , \( -32\) , \( 78\bigr] \) ${y}^2={x}^{3}-{x}^{2}-32{x}+78$
34848.5-c1 34848.5-c \(\Q(\sqrt{-2}) \) \( 2^{5} \cdot 3^{2} \cdot 11^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $22.21303546$ $0.053527571$ 3.363027698 \( -\frac{12708968894521128515042}{133734320049626216811} a - \frac{42817294016330783977240}{12157665459056928801} \) \( \bigl[a\) , \( 1\) , \( 0\) , \( -13255 a - 2178\) , \( -710314 a + 693023\bigr] \) ${y}^2+a{x}{y}={x}^{3}+{x}^{2}+\left(-13255a-2178\right){x}-710314a+693023$
34848.5-c2 34848.5-c \(\Q(\sqrt{-2}) \) \( 2^{5} \cdot 3^{2} \cdot 11^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $22.21303546$ $0.053527571$ 3.363027698 \( \frac{12708968894521128515042}{133734320049626216811} a - \frac{42817294016330783977240}{12157665459056928801} \) \( \bigl[a\) , \( 1\) , \( 0\) , \( 13255 a - 2178\) , \( 710314 a + 693023\bigr] \) ${y}^2+a{x}{y}={x}^{3}+{x}^{2}+\left(13255a-2178\right){x}+710314a+693023$
34848.5-c3 34848.5-c \(\Q(\sqrt{-2}) \) \( 2^{5} \cdot 3^{2} \cdot 11^{2} \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $11.10651773$ $0.107055143$ 3.363027698 \( -\frac{1343891598641864}{421900912521} \) \( \bigl[a\) , \( 1\) , \( 0\) , \( -4598\) , \( 148281\bigr] \) ${y}^2+a{x}{y}={x}^{3}+{x}^{2}-4598{x}+148281$
34848.5-c4 34848.5-c \(\Q(\sqrt{-2}) \) \( 2^{5} \cdot 3^{2} \cdot 11^{2} \) $1$ $\Z/4\Z$ $\mathrm{SU}(2)$ $2.776629433$ $0.107055143$ 3.363027698 \( \frac{243578556889408}{52089208083} \) \( \bigl[0\) , \( -1\) , \( 0\) , \( -5204\) , \( 116478\bigr] \) ${y}^2={x}^{3}-{x}^{2}-5204{x}+116478$
34848.5-c5 34848.5-c \(\Q(\sqrt{-2}) \) \( 2^{5} \cdot 3^{2} \cdot 11^{2} \) $1$ $\Z/2\Z\oplus\Z/4\Z$ $\mathrm{SU}(2)$ $5.553258866$ $0.107055143$ 3.363027698 \( \frac{13015685560572352}{864536409} \) \( \bigl[0\) , \( -1\) , \( 0\) , \( -19602\) , \( -1049760\bigr] \) ${y}^2={x}^{3}-{x}^{2}-19602{x}-1049760$
34848.5-c6 34848.5-c \(\Q(\sqrt{-2}) \) \( 2^{5} \cdot 3^{2} \cdot 11^{2} \) $1$ $\Z/4\Z$ $\mathrm{SU}(2)$ $11.10651773$ $0.107055143$ 3.363027698 \( \frac{6663712298552914184}{29403} \) \( \bigl[a\) , \( 1\) , \( a\) , \( -78407\) , \( 8437568\bigr] \) ${y}^2+a{x}{y}+a{y}={x}^{3}+{x}^{2}-78407{x}+8437568$
34848.5-d1 34848.5-d \(\Q(\sqrt{-2}) \) \( 2^{5} \cdot 3^{2} \cdot 11^{2} \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $0.415458008$ $3.096117196$ 3.638224721 \( -\frac{8}{1089} \) \( \bigl[a\) , \( 1\) , \( a\) , \( 1\) , \( -4\bigr] \) ${y}^2+a{x}{y}+a{y}={x}^{3}+{x}^{2}+{x}-4$
34848.5-d2 34848.5-d \(\Q(\sqrt{-2}) \) \( 2^{5} \cdot 3^{2} \cdot 11^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $0.830916017$ $1.548058598$ 3.638224721 \( -\frac{2542910410}{1185921} a + \frac{61806909416}{1185921} \) \( \bigl[a\) , \( 1\) , \( a\) , \( -25 a + 21\) , \( -3 a - 94\bigr] \) ${y}^2+a{x}{y}+a{y}={x}^{3}+{x}^{2}+\left(-25a+21\right){x}-3a-94$
34848.5-d3 34848.5-d \(\Q(\sqrt{-2}) \) \( 2^{5} \cdot 3^{2} \cdot 11^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $0.830916017$ $1.548058598$ 3.638224721 \( \frac{2542910410}{1185921} a + \frac{61806909416}{1185921} \) \( \bigl[a\) , \( 1\) , \( a\) , \( 25 a + 21\) , \( 3 a - 94\bigr] \) ${y}^2+a{x}{y}+a{y}={x}^{3}+{x}^{2}+\left(25a+21\right){x}+3a-94$
34848.5-d4 34848.5-d \(\Q(\sqrt{-2}) \) \( 2^{5} \cdot 3^{2} \cdot 11^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $0.830916017$ $3.096117196$ 3.638224721 \( \frac{1906624}{33} \) \( \bigl[0\) , \( -1\) , \( 0\) , \( -10\) , \( 16\bigr] \) ${y}^2={x}^{3}-{x}^{2}-10{x}+16$
34848.5-e1 34848.5-e \(\Q(\sqrt{-2}) \) \( 2^{5} \cdot 3^{2} \cdot 11^{2} \) 0 $\Z/4\Z$ $\mathrm{SU}(2)$ $1$ $0.690430211$ 1.952831537 \( -\frac{52006035768946}{643076643} a - \frac{19928304450840}{214358881} \) \( \bigl[a\) , \( 1\) , \( a\) , \( 105 a + 195\) , \( -567 a + 1254\bigr] \) ${y}^2+a{x}{y}+a{y}={x}^{3}+{x}^{2}+\left(105a+195\right){x}-567a+1254$
34848.5-e2 34848.5-e \(\Q(\sqrt{-2}) \) \( 2^{5} \cdot 3^{2} \cdot 11^{2} \) 0 $\Z/4\Z$ $\mathrm{SU}(2)$ $1$ $0.690430211$ 1.952831537 \( \frac{52006035768946}{643076643} a - \frac{19928304450840}{214358881} \) \( \bigl[a\) , \( 1\) , \( a\) , \( -105 a + 195\) , \( 567 a + 1254\bigr] \) ${y}^2+a{x}{y}+a{y}={x}^{3}+{x}^{2}+\left(-105a+195\right){x}+567a+1254$
34848.5-e3 34848.5-e \(\Q(\sqrt{-2}) \) \( 2^{5} \cdot 3^{2} \cdot 11^{2} \) 0 $\Z/2\Z\oplus\Z/4\Z$ $\mathrm{SU}(2)$ $1$ $1.380860422$ 1.952831537 \( \frac{37259704}{131769} \) \( \bigl[a\) , \( 1\) , \( a\) , \( 15\) , \( 48\bigr] \) ${y}^2+a{x}{y}+a{y}={x}^{3}+{x}^{2}+15{x}+48$
34848.5-e4 34848.5-e \(\Q(\sqrt{-2}) \) \( 2^{5} \cdot 3^{2} \cdot 11^{2} \) 0 $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $1.380860422$ 1.952831537 \( \frac{69934528}{9801} \) \( \bigl[0\) , \( -1\) , \( 0\) , \( -34\) , \( -56\bigr] \) ${y}^2={x}^{3}-{x}^{2}-34{x}-56$
34848.5-e5 34848.5-e \(\Q(\sqrt{-2}) \) \( 2^{5} \cdot 3^{2} \cdot 11^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $1.380860422$ 1.952831537 \( \frac{649461896}{72171} \) \( \bigl[a\) , \( 1\) , \( 0\) , \( -36\) , \( -81\bigr] \) ${y}^2+a{x}{y}={x}^{3}+{x}^{2}-36{x}-81$
34848.5-e6 34848.5-e \(\Q(\sqrt{-2}) \) \( 2^{5} \cdot 3^{2} \cdot 11^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $1.380860422$ 1.952831537 \( \frac{4004529472}{99} \) \( \bigl[0\) , \( -1\) , \( 0\) , \( -132\) , \( 630\bigr] \) ${y}^2={x}^{3}-{x}^{2}-132{x}+630$
34848.5-f1 34848.5-f \(\Q(\sqrt{-2}) \) \( 2^{5} \cdot 3^{2} \cdot 11^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $0.672729625$ $2.629010090$ 5.002392910 \( \frac{64}{363} \) \( \bigl[0\) , \( a\) , \( 0\) , \( -1\) , \( 5 a\bigr] \) ${y}^2={x}^{3}+a{x}^{2}-{x}+5a$
34848.5-f2 34848.5-f \(\Q(\sqrt{-2}) \) \( 2^{5} \cdot 3^{2} \cdot 11^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $0.336364812$ $2.629010090$ 5.002392910 \( \frac{4410944}{99} \) \( \bigl[0\) , \( a\) , \( 0\) , \( 13\) , \( -9 a\bigr] \) ${y}^2={x}^{3}+a{x}^{2}+13{x}-9a$
34848.5-g1 34848.5-g \(\Q(\sqrt{-2}) \) \( 2^{5} \cdot 3^{2} \cdot 11^{2} \) $1$ $\Z/2\Z\oplus\Z/4\Z$ $\mathrm{SU}(2)$ $2.211584060$ $0.211807680$ 5.299686017 \( -\frac{60180985892672}{96059601} \) \( \bigl[0\) , \( a\) , \( 0\) , \( 3265\) , \( -49773 a\bigr] \) ${y}^2={x}^{3}+a{x}^{2}+3265{x}-49773a$
34848.5-g2 34848.5-g \(\Q(\sqrt{-2}) \) \( 2^{5} \cdot 3^{2} \cdot 11^{2} \) $1$ $\Z/4\Z$ $\mathrm{SU}(2)$ $2.211584060$ $0.105903840$ 5.299686017 \( -\frac{683085319821764407869958}{27130068584979804081} a - \frac{1732757663662627072803340}{27130068584979804081} \) \( \bigl[a\) , \( a - 1\) , \( 0\) , \( -5181 a + 5544\) , \( -39078 a - 336159\bigr] \) ${y}^2+a{x}{y}={x}^{3}+\left(a-1\right){x}^{2}+\left(-5181a+5544\right){x}-39078a-336159$
34848.5-g3 34848.5-g \(\Q(\sqrt{-2}) \) \( 2^{5} \cdot 3^{2} \cdot 11^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $8.846336241$ $0.105903840$ 5.299686017 \( \frac{683085319821764407869958}{27130068584979804081} a - \frac{1732757663662627072803340}{27130068584979804081} \) \( \bigl[a\) , \( a - 1\) , \( a\) , \( 5179 a + 5545\) , \( -44258 a + 330616\bigr] \) ${y}^2+a{x}{y}+a{y}={x}^{3}+\left(a-1\right){x}^{2}+\left(5179a+5545\right){x}-44258a+330616$
34848.5-g4 34848.5-g \(\Q(\sqrt{-2}) \) \( 2^{5} \cdot 3^{2} \cdot 11^{2} \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $4.423168120$ $0.211807680$ 5.299686017 \( -\frac{3556845709248955760}{9227446944279201} a + \frac{6549496418959980296}{9227446944279201} \) \( \bigl[a\) , \( a - 1\) , \( a\) , \( 174 a + 815\) , \( 6705 a + 5192\bigr] \) ${y}^2+a{x}{y}+a{y}={x}^{3}+\left(a-1\right){x}^{2}+\left(174a+815\right){x}+6705a+5192$
34848.5-g5 34848.5-g \(\Q(\sqrt{-2}) \) \( 2^{5} \cdot 3^{2} \cdot 11^{2} \) $1$ $\Z/2\Z\oplus\Z/4\Z$ $\mathrm{SU}(2)$ $1.105792030$ $0.211807680$ 5.299686017 \( \frac{3556845709248955760}{9227446944279201} a + \frac{6549496418959980296}{9227446944279201} \) \( \bigl[a\) , \( a - 1\) , \( 0\) , \( -176 a + 814\) , \( 6880 a - 6005\bigr] \) ${y}^2+a{x}{y}={x}^{3}+\left(a-1\right){x}^{2}+\left(-176a+814\right){x}+6880a-6005$
34848.5-g6 34848.5-g \(\Q(\sqrt{-2}) \) \( 2^{5} \cdot 3^{2} \cdot 11^{2} \) $1$ $\Z/4\Z$ $\mathrm{SU}(2)$ $2.211584060$ $0.105903840$ 5.299686017 \( -\frac{361681446473310730193882}{301476177634896948321} a + \frac{854702421769836561764380}{301476177634896948321} \) \( \bigl[a\) , \( a - 1\) , \( 0\) , \( 2029 a - 3956\) , \( 64678 a - 39719\bigr] \) ${y}^2+a{x}{y}={x}^{3}+\left(a-1\right){x}^{2}+\left(2029a-3956\right){x}+64678a-39719$
34848.5-g7 34848.5-g \(\Q(\sqrt{-2}) \) \( 2^{5} \cdot 3^{2} \cdot 11^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $8.846336241$ $0.105903840$ 5.299686017 \( \frac{361681446473310730193882}{301476177634896948321} a + \frac{854702421769836561764380}{301476177634896948321} \) \( \bigl[a\) , \( a - 1\) , \( a\) , \( -2031 a - 3955\) , \( 66708 a + 43676\bigr] \) ${y}^2+a{x}{y}+a{y}={x}^{3}+\left(a-1\right){x}^{2}+\left(-2031a-3955\right){x}+66708a+43676$
34848.5-g8 34848.5-g \(\Q(\sqrt{-2}) \) \( 2^{5} \cdot 3^{2} \cdot 11^{2} \) $1$ $\Z/4\Z$ $\mathrm{SU}(2)$ $4.423168120$ $0.211807680$ 5.299686017 \( \frac{3856007604379328}{9801} \) \( \bigl[0\) , \( a\) , \( 0\) , \( 13067\) , \( 410921 a\bigr] \) ${y}^2={x}^{3}+a{x}^{2}+13067{x}+410921a$
34848.5-h1 34848.5-h \(\Q(\sqrt{-2}) \) \( 2^{5} \cdot 3^{2} \cdot 11^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $2.098171996$ 2.967263293 \( -\frac{2706464672}{1185921} a - \frac{6348004600}{1185921} \) \( \bigl[a\) , \( a - 1\) , \( a\) , \( 9 a + 1\) , \( 6 a + 11\bigr] \) ${y}^2+a{x}{y}+a{y}={x}^{3}+\left(a-1\right){x}^{2}+\left(9a+1\right){x}+6a+11$
34848.5-h2 34848.5-h \(\Q(\sqrt{-2}) \) \( 2^{5} \cdot 3^{2} \cdot 11^{2} \) 0 $\Z/4\Z$ $\mathrm{SU}(2)$ $1$ $2.098171996$ 2.967263293 \( \frac{2706464672}{1185921} a - \frac{6348004600}{1185921} \) \( \bigl[a\) , \( a - 1\) , \( 0\) , \( -11 a\) , \( 16 a - 10\bigr] \) ${y}^2+a{x}{y}={x}^{3}+\left(a-1\right){x}^{2}-11a{x}+16a-10$
34848.5-h3 34848.5-h \(\Q(\sqrt{-2}) \) \( 2^{5} \cdot 3^{2} \cdot 11^{2} \) 0 $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $2.098171996$ 2.967263293 \( -\frac{1560896}{1089} \) \( \bigl[0\) , \( a\) , \( 0\) , \( 9\) , \( -9 a\bigr] \) ${y}^2={x}^{3}+a{x}^{2}+9{x}-9a$
34848.5-h4 34848.5-h \(\Q(\sqrt{-2}) \) \( 2^{5} \cdot 3^{2} \cdot 11^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $2.098171996$ 2.967263293 \( \frac{143877824}{33} \) \( \bigl[0\) , \( a\) , \( 0\) , \( 43\) , \( 93 a\bigr] \) ${y}^2={x}^{3}+a{x}^{2}+43{x}+93a$
34848.5-i1 34848.5-i \(\Q(\sqrt{-2}) \) \( 2^{5} \cdot 3^{2} \cdot 11^{2} \) 0 $\Z/4\Z$ $\mathrm{SU}(2)$ $1$ $0.600694068$ 1.699019398 \( \frac{49732300062730}{1089} a - \frac{42287026814216}{1089} \) \( \bigl[a\) , \( a - 1\) , \( 0\) , \( 879 a + 704\) , \( -10 a + 19869\bigr] \) ${y}^2+a{x}{y}={x}^{3}+\left(a-1\right){x}^{2}+\left(879a+704\right){x}-10a+19869$
34848.5-i2 34848.5-i \(\Q(\sqrt{-2}) \) \( 2^{5} \cdot 3^{2} \cdot 11^{2} \) 0 $\Z/2\Z\oplus\Z/4\Z$ $\mathrm{SU}(2)$ $1$ $1.201388137$ 1.699019398 \( -\frac{200372689600}{1185921} a - \frac{159388200712}{1185921} \) \( \bigl[a\) , \( a - 1\) , \( 0\) , \( 54 a + 44\) , \( -10 a + 267\bigr] \) ${y}^2+a{x}{y}={x}^{3}+\left(a-1\right){x}^{2}+\left(54a+44\right){x}-10a+267$
34848.5-i3 34848.5-i \(\Q(\sqrt{-2}) \) \( 2^{5} \cdot 3^{2} \cdot 11^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $1.201388137$ 1.699019398 \( \frac{106545031168}{793881} a - \frac{76443565120}{793881} \) \( \bigl[0\) , \( a\) , \( 0\) , \( 60 a - 13\) , \( -187 a - 204\bigr] \) ${y}^2={x}^{3}+a{x}^{2}+\left(60a-13\right){x}-187a-204$
34848.5-i4 34848.5-i \(\Q(\sqrt{-2}) \) \( 2^{5} \cdot 3^{2} \cdot 11^{2} \) 0 $\Z/4\Z$ $\mathrm{SU}(2)$ $1$ $0.600694068$ 1.699019398 \( \frac{194755911135350}{1406408618241} a + \frac{362869836626648}{1406408618241} \) \( \bigl[a\) , \( a - 1\) , \( 0\) , \( 29 a + 64\) , \( 190 a + 437\bigr] \) ${y}^2+a{x}{y}={x}^{3}+\left(a-1\right){x}^{2}+\left(29a+64\right){x}+190a+437$
34848.5-i5 34848.5-i \(\Q(\sqrt{-2}) \) \( 2^{5} \cdot 3^{2} \cdot 11^{2} \) 0 $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $1.201388137$ 1.699019398 \( -\frac{50309120}{1185921} a + \frac{1366917056}{1185921} \) \( \bigl[0\) , \( a\) , \( 0\) , \( 20 a + 5\) , \( 27 a - 36\bigr] \) ${y}^2={x}^{3}+a{x}^{2}+\left(20a+5\right){x}+27a-36$
34848.5-i6 34848.5-i \(\Q(\sqrt{-2}) \) \( 2^{5} \cdot 3^{2} \cdot 11^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $1.201388137$ 1.699019398 \( \frac{159645003968}{1929229929} a + \frac{4875002501080}{1929229929} \) \( \bigl[a\) , \( a - 1\) , \( a\) , \( -26 a - 5\) , \( -17 a + 46\bigr] \) ${y}^2+a{x}{y}+a{y}={x}^{3}+\left(a-1\right){x}^{2}+\left(-26a-5\right){x}-17a+46$
34848.5-j1 34848.5-j \(\Q(\sqrt{-2}) \) \( 2^{5} \cdot 3^{2} \cdot 11^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $3.353942873$ $0.600694068$ 5.698414003 \( -\frac{49732300062730}{1089} a - \frac{42287026814216}{1089} \) \( \bigl[a\) , \( a - 1\) , \( a\) , \( -881 a + 705\) , \( 870 a - 20572\bigr] \) ${y}^2+a{x}{y}+a{y}={x}^{3}+\left(a-1\right){x}^{2}+\left(-881a+705\right){x}+870a-20572$
34848.5-j2 34848.5-j \(\Q(\sqrt{-2}) \) \( 2^{5} \cdot 3^{2} \cdot 11^{2} \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $1.676971436$ $1.201388137$ 5.698414003 \( \frac{200372689600}{1185921} a - \frac{159388200712}{1185921} \) \( \bigl[a\) , \( a - 1\) , \( a\) , \( -56 a + 45\) , \( 45 a - 310\bigr] \) ${y}^2+a{x}{y}+a{y}={x}^{3}+\left(a-1\right){x}^{2}+\left(-56a+45\right){x}+45a-310$
34848.5-j3 34848.5-j \(\Q(\sqrt{-2}) \) \( 2^{5} \cdot 3^{2} \cdot 11^{2} \) $1$ $\Z/4\Z$ $\mathrm{SU}(2)$ $1.676971436$ $1.201388137$ 5.698414003 \( -\frac{106545031168}{793881} a - \frac{76443565120}{793881} \) \( \bigl[0\) , \( a\) , \( 0\) , \( -60 a - 13\) , \( -187 a + 204\bigr] \) ${y}^2={x}^{3}+a{x}^{2}+\left(-60a-13\right){x}-187a+204$
34848.5-j4 34848.5-j \(\Q(\sqrt{-2}) \) \( 2^{5} \cdot 3^{2} \cdot 11^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $3.353942873$ $0.600694068$ 5.698414003 \( -\frac{194755911135350}{1406408618241} a + \frac{362869836626648}{1406408618241} \) \( \bigl[a\) , \( a - 1\) , \( a\) , \( -31 a + 65\) , \( 220 a - 500\bigr] \) ${y}^2+a{x}{y}+a{y}={x}^{3}+\left(a-1\right){x}^{2}+\left(-31a+65\right){x}+220a-500$
34848.5-j5 34848.5-j \(\Q(\sqrt{-2}) \) \( 2^{5} \cdot 3^{2} \cdot 11^{2} \) $1$ $\Z/2\Z\oplus\Z/4\Z$ $\mathrm{SU}(2)$ $0.838485718$ $1.201388137$ 5.698414003 \( \frac{50309120}{1185921} a + \frac{1366917056}{1185921} \) \( \bigl[0\) , \( a\) , \( 0\) , \( -20 a + 5\) , \( 27 a + 36\bigr] \) ${y}^2={x}^{3}+a{x}^{2}+\left(-20a+5\right){x}+27a+36$
34848.5-j6 34848.5-j \(\Q(\sqrt{-2}) \) \( 2^{5} \cdot 3^{2} \cdot 11^{2} \) $1$ $\Z/4\Z$ $\mathrm{SU}(2)$ $1.676971436$ $1.201388137$ 5.698414003 \( -\frac{159645003968}{1929229929} a + \frac{4875002501080}{1929229929} \) \( \bigl[a\) , \( a - 1\) , \( 0\) , \( 24 a - 6\) , \( -42 a - 39\bigr] \) ${y}^2+a{x}{y}={x}^{3}+\left(a-1\right){x}^{2}+\left(24a-6\right){x}-42a-39$
34848.5-k1 34848.5-k \(\Q(\sqrt{-2}) \) \( 2^{5} \cdot 3^{2} \cdot 11^{2} \) 0 $\Z/4\Z$ $\mathrm{SU}(2)$ $1$ $0.600694068$ 1.699019398 \( -\frac{49732300062730}{1089} a - \frac{42287026814216}{1089} \) \( \bigl[a\) , \( -a - 1\) , \( 0\) , \( -879 a + 704\) , \( 10 a + 19869\bigr] \) ${y}^2+a{x}{y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(-879a+704\right){x}+10a+19869$
34848.5-k2 34848.5-k \(\Q(\sqrt{-2}) \) \( 2^{5} \cdot 3^{2} \cdot 11^{2} \) 0 $\Z/2\Z\oplus\Z/4\Z$ $\mathrm{SU}(2)$ $1$ $1.201388137$ 1.699019398 \( \frac{200372689600}{1185921} a - \frac{159388200712}{1185921} \) \( \bigl[a\) , \( -a - 1\) , \( 0\) , \( -54 a + 44\) , \( 10 a + 267\bigr] \) ${y}^2+a{x}{y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(-54a+44\right){x}+10a+267$
Next   displayed columns for results

  *The rank, regulator and analytic order of Ш are not known for all curves in the database; curves for which these are unknown will not appear in searches specifying one of these quantities.