Label
Class
Class size
Class degree
Base field
Field degree
Field signature
Conductor
Conductor norm
Discriminant norm
Root analytic conductor
Bad primes
Rank
Torsion
CM
CM
Sato-Tate
$\Q$-curve
Base change
Semistable
Potentially good
Nonmax $\ell$
mod-$\ell$ images
$Ш_{\textrm{an}}$
Tamagawa
Regulator
Period
Leading coeff
j-invariant
Weierstrass coefficients
Weierstrass equation
16384.1-a1
16384.1-a
$2$
$2$
\(\Q(\sqrt{-2}) \)
$2$
$[0, 1]$
16384.1
\( 2^{14} \)
\( 2^{21} \)
$2.85949$
$(a)$
$2$
$\Z/2\Z$
$\textsf{potential}$
$-4$
$N(\mathrm{U}(1))$
✓
✓
$1$
\( 2 \)
$1.012804378$
$4.088009945$
5.855345308
\( 1728 \)
\( \bigl[0\) , \( 0\) , \( 0\) , \( 2 a\) , \( 0\bigr] \)
${y}^2={x}^{3}+2a{x}$
16384.1-a2
16384.1-a
$2$
$2$
\(\Q(\sqrt{-2}) \)
$2$
$[0, 1]$
16384.1
\( 2^{14} \)
\( 2^{21} \)
$2.85949$
$(a)$
$2$
$\Z/2\Z$
$\textsf{potential}$
$-4$
$N(\mathrm{U}(1))$
✓
✓
$1$
\( 2 \)
$1.012804378$
$4.088009945$
5.855345308
\( 1728 \)
\( \bigl[0\) , \( 0\) , \( 0\) , \( -2 a\) , \( 0\bigr] \)
${y}^2={x}^{3}-2a{x}$
16384.1-b1
16384.1-b
$2$
$2$
\(\Q(\sqrt{-2}) \)
$2$
$[0, 1]$
16384.1
\( 2^{14} \)
\( 2^{15} \)
$2.85949$
$(a)$
0
$\Z/2\Z$
$\textsf{potential}$
$-4$
$N(\mathrm{U}(1))$
✓
✓
$1$
\( 2 \)
$1$
$5.781319108$
2.044004972
\( 1728 \)
\( \bigl[0\) , \( 0\) , \( 0\) , \( -a\) , \( 0\bigr] \)
${y}^2={x}^{3}-a{x}$
16384.1-b2
16384.1-b
$2$
$2$
\(\Q(\sqrt{-2}) \)
$2$
$[0, 1]$
16384.1
\( 2^{14} \)
\( 2^{15} \)
$2.85949$
$(a)$
0
$\Z/2\Z$
$\textsf{potential}$
$-4$
$N(\mathrm{U}(1))$
✓
✓
$1$
\( 2 \)
$1$
$5.781319108$
2.044004972
\( 1728 \)
\( \bigl[0\) , \( 0\) , \( 0\) , \( a\) , \( 0\bigr] \)
${y}^2={x}^{3}+a{x}$
Download
displayed columns for
results
to
Text
Pari/GP
SageMath
Magma
Oscar
CSV
*The rank, regulator and analytic order of Ш are
not known for all curves in the database; curves for which these are
unknown will not appear in searches specifying one of these
quantities.