Learn more

Refine search


Results (4 matches)

  displayed columns for results
Label Class Base field Conductor norm Rank Torsion CM Sato-Tate Regulator Period Leading coeff j-invariant Weierstrass coefficients Weierstrass equation
1458.6-a1 1458.6-a \(\Q(\sqrt{-2}) \) \( 2 \cdot 3^{6} \) $1$ $\Z/3\Z$ $\mathrm{SU}(2)$ $0.098252494$ $3.735412167$ 2.076142234 \( -\frac{646679}{1458} a + \frac{382013}{1458} \) \( \bigl[a + 1\) , \( -a\) , \( 1\) , \( -a - 3\) , \( 2\bigr] \) ${y}^2+\left(a+1\right){x}{y}+{y}={x}^{3}-a{x}^{2}+\left(-a-3\right){x}+2$
1458.6-a2 1458.6-a \(\Q(\sqrt{-2}) \) \( 2 \cdot 3^{6} \) $1$ $\mathsf{trivial}$ $\mathrm{SU}(2)$ $0.294757483$ $1.245137389$ 2.076142234 \( -\frac{473225423}{72} a + \frac{14377079}{72} \) \( \bigl[a + 1\) , \( -a\) , \( 1\) , \( -91 a - 48\) , \( -405 a + 128\bigr] \) ${y}^2+\left(a+1\right){x}{y}+{y}={x}^{3}-a{x}^{2}+\left(-91a-48\right){x}-405a+128$
1458.6-b1 1458.6-b \(\Q(\sqrt{-2}) \) \( 2 \cdot 3^{6} \) 0 $\mathsf{trivial}$ $\mathrm{SU}(2)$ $1$ $2.174747898$ 1.537778986 \( -\frac{31635919}{6144} a + \frac{1878611}{768} \) \( \bigl[1\) , \( a + 1\) , \( 0\) , \( 2 a - 14\) , \( -8 a + 12\bigr] \) ${y}^2+{x}{y}={x}^{3}+\left(a+1\right){x}^{2}+\left(2a-14\right){x}-8a+12$
1458.6-b2 1458.6-b \(\Q(\sqrt{-2}) \) \( 2 \cdot 3^{6} \) 0 $\Z/3\Z$ $\mathrm{SU}(2)$ $1$ $2.174747898$ 1.537778986 \( \frac{4823791}{432} a + \frac{1143199}{54} \) \( \bigl[a + 1\) , \( -a\) , \( 1\) , \( -4 a - 18\) , \( 12 a + 26\bigr] \) ${y}^2+\left(a+1\right){x}{y}+{y}={x}^{3}-a{x}^{2}+\left(-4a-18\right){x}+12a+26$
  displayed columns for results

  *The rank, regulator and analytic order of Ш are not known for all curves in the database; curves for which these are unknown will not appear in searches specifying one of these quantities.