Generator a, with minimal polynomial
x2−x+18; class number 7.
sage:R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([18, -1, 1]))
gp:K = nfinit(Polrev([18, -1, 1]));
magma:R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![18, -1, 1]);
y2+xy+y=x3+(a−1)x2+(−16a−131)x−149a−349
sage:E = EllipticCurve([K([1,0]),K([-1,1]),K([1,0]),K([-131,-16]),K([-349,-149])])
gp:E = ellinit([Polrev([1,0]),Polrev([-1,1]),Polrev([1,0]),Polrev([-131,-16]),Polrev([-349,-149])], K);
magma:E := EllipticCurve([K![1,0],K![-1,1],K![1,0],K![-131,-16],K![-349,-149]]);
This is not a global minimal
model: it is minimal
at all primes except (5,a+1).
No global minimal model exists.
sage:E.is_global_minimal_model()
Z⊕Z/3Z
P | h^(P) | Order |
(−4243629059a−42436250583:87418162124055a+874181626863499:1) | 5.2523051886693744665081747252624554907 | ∞ |
(−a−5:−a−2:1) | 0 | 3 |
Conductor: |
N |
= |
(18,2a) |
= |
(2,a)⋅(2,a+1)⋅(3,a)2 |
sage:E.conductor()
gp:ellglobalred(E)[1]
magma:Conductor(E);
|
Conductor norm: |
N(N) |
= |
36 |
= |
2⋅2⋅32 |
sage:E.conductor().norm()
gp:idealnorm(ellglobalred(E)[1])
magma:Norm(Conductor(E));
|
Discriminant: |
Δ |
= |
789184a+184824 |
Discriminant ideal:
|
(Δ)
|
= |
(789184a+184824) |
= |
(2,a)3⋅(2,a+1)3⋅(3,a)6⋅(5,a+1)12 |
sage:E.discriminant()
gp:E.disc
magma:Discriminant(E);
|
Discriminant norm:
|
N(Δ)
|
= |
11390625000000 |
= |
23⋅23⋅36⋅512 |
sage:E.discriminant().norm()
gp:norm(E.disc)
magma:Norm(Discriminant(E));
|
Minimal discriminant: |
Dmin |
= |
(5832,8a+3096) |
= |
(2,a)3⋅(2,a+1)3⋅(3,a)6 |
Minimal discriminant norm: |
N(Dmin) |
= |
46656 |
= |
23⋅23⋅36 |
j-invariant: |
j |
= |
8857375 |
sage:E.j_invariant()
gp:E.j
magma:jInvariant(E);
|
Endomorphism ring: |
End(E) |
= |
Z
|
Geometric endomorphism ring: |
End(EQ) |
= |
Z
(no potential complex multiplication)
|
sage:E.has_cm(), E.cm_discriminant()
magma:HasComplexMultiplication(E);
|
Sato-Tate group: |
ST(E) |
= |
SU(2) |
Analytic rank: |
ran | = |
1
|
sage:E.rank()
magma:Rank(E);
|
Mordell-Weil rank: |
r |
= |
1 |
Regulator:
|
Reg(E/K) |
≈ |
5.2523051886693744665081747252624554907
|
Néron-Tate Regulator:
|
RegNT(E/K) |
≈ |
10.504610377338748933016349450524910981
|
Global period: |
Ω(E/K) | ≈ |
8.6259178240387304854320025847014532740 |
Tamagawa product: |
∏pcp | = |
3
= 3⋅1⋅1⋅1
|
Torsion order: |
#E(K)tor | = |
3 |
Special value: |
L(r)(E/K,1)/r! |
≈ | 3.5845515974140687728821915487463018989 |
Analytic order of Ш:
|
Шan | = |
1 (rounded) |
3.584551597≈L′(E/K,1)=?#E(K)tor2⋅∣dK∣1/2#Ш(E/K)⋅Ω(E/K)⋅RegNT(E/K)⋅∏pcp≈32⋅8.4261501⋅8.625918⋅10.504610⋅3≈3.584551597
sage:E.local_data()
magma:LocalInformation(E);
This elliptic curve is not semistable.
There
are 3 primes p
of bad reduction.
Primes of good reduction for the curve but which divide the
discriminant of the model above (if any) are included.
p |
N(p) |
Tamagawa number |
Kodaira symbol |
Reduction type |
Root number |
ordp(N) |
ordp(Dmin) |
ordp(den(j)) |
(2,a)
|
2
|
3
|
I3
|
Split multiplicative
|
−1 |
1 |
3 |
3 |
(2,a+1)
|
2
|
1
|
I3
|
Non-split multiplicative
|
1 |
1 |
3 |
3 |
(3,a)
|
3
|
1
|
I0∗
|
Additive
|
−1 |
2 |
6 |
0 |
(5,a+1)
|
5
|
1
|
I0
|
Good
|
1 |
0 |
0 |
0 |
This curve has non-trivial cyclic isogenies of degree d for d=
3.
Its isogeny class
36.4-c
consists of curves linked by isogenies of
degrees dividing 9.
This elliptic curve is a Q-curve.
It is not the base change of an elliptic curve defined over any subfield.