Properties

Label 2.0.71.1-36.4-c3
Base field Q(71)\Q(\sqrt{-71})
Conductor norm 36 36
CM no
Base change no
Q-curve yes
Torsion order 3 3
Rank 1 1

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Base field Q(71)\Q(\sqrt{-71})

Generator aa, with minimal polynomial x2x+18 x^{2} - x + 18 ; class number 77.

Copy content comment:Define the base number field
 
Copy content sage:R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([18, -1, 1]))
 
Copy content gp:K = nfinit(Polrev([18, -1, 1]));
 
Copy content magma:R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![18, -1, 1]);
 

Weierstrass equation

y2+xy+y=x3+(a1)x2+(16a131)x149a349{y}^2+{x}{y}+{y}={x}^3+\left(a-1\right){x}^2+\left(-16a-131\right){x}-149a-349
Copy content comment:Define the curve
 
Copy content sage:E = EllipticCurve([K([1,0]),K([-1,1]),K([1,0]),K([-131,-16]),K([-349,-149])])
 
Copy content gp:E = ellinit([Polrev([1,0]),Polrev([-1,1]),Polrev([1,0]),Polrev([-131,-16]),Polrev([-349,-149])], K);
 
Copy content magma:E := EllipticCurve([K![1,0],K![-1,1],K![1,0],K![-131,-16],K![-349,-149]]);
 

This is not a global minimal model: it is minimal at all primes except (5,a+1)(5,a+1). No global minimal model exists.

Copy content comment:Test whether it is a global minimal model
 
Copy content sage:E.is_global_minimal_model()
 

Mordell-Weil group structure

ZZ/3Z\Z \oplus \Z/{3}\Z

Mordell-Weil generators

PPh^(P)\hat{h}(P)Order
(2905942436a25058342436:21240558741816a+268634998741816:1)\left(-\frac{29059}{42436} a - \frac{250583}{42436} : \frac{2124055}{8741816} a + \frac{26863499}{8741816} : 1\right)5.25230518866937446650817472526245549075.2523051886693744665081747252624554907\infty
(a5:a2:1)\left(-a - 5 : -a - 2 : 1\right)0033

Invariants

Conductor: N\frak{N} = (18,2a)(18,2a) = (2,a)(2,a+1)(3,a)2(2,a)\cdot(2,a+1)\cdot(3,a)^{2}
Copy content comment:Compute the conductor
 
Copy content sage:E.conductor()
 
Copy content gp:ellglobalred(E)[1]
 
Copy content magma:Conductor(E);
 
Conductor norm: N(N)N(\frak{N}) = 36 36 = 22322\cdot2\cdot3^{2}
Copy content comment:Compute the norm of the conductor
 
Copy content sage:E.conductor().norm()
 
Copy content gp:idealnorm(ellglobalred(E)[1])
 
Copy content magma:Norm(Conductor(E));
 
Discriminant: Δ\Delta = 789184a+184824789184a+184824
Discriminant ideal: (Δ)(\Delta) = (789184a+184824)(789184a+184824) = (2,a)3(2,a+1)3(3,a)6(5,a+1)12(2,a)^{3}\cdot(2,a+1)^{3}\cdot(3,a)^{6}\cdot(5,a+1)^{12}
Copy content comment:Compute the discriminant
 
Copy content sage:E.discriminant()
 
Copy content gp:E.disc
 
Copy content magma:Discriminant(E);
 
Discriminant norm: N(Δ)N(\Delta) = 11390625000000 11390625000000 = 2323365122^{3}\cdot2^{3}\cdot3^{6}\cdot5^{12}
Copy content comment:Compute the norm of the discriminant
 
Copy content sage:E.discriminant().norm()
 
Copy content gp:norm(E.disc)
 
Copy content magma:Norm(Discriminant(E));
 
Minimal discriminant: Dmin\frak{D}_{\mathrm{min}} = (5832,8a+3096)(5832,8a+3096) = (2,a)3(2,a+1)3(3,a)6(2,a)^{3}\cdot(2,a+1)^{3}\cdot(3,a)^{6}
Minimal discriminant norm: N(Dmin)N(\frak{D}_{\mathrm{min}}) = 46656 46656 = 2323362^{3}\cdot2^{3}\cdot3^{6}
j-invariant: jj = 8573758 \frac{857375}{8}
Copy content comment:Compute the j-invariant
 
Copy content sage:E.j_invariant()
 
Copy content gp:E.j
 
Copy content magma:jInvariant(E);
 
Endomorphism ring: End(E)\mathrm{End}(E) = Z\Z   
Geometric endomorphism ring: End(EQ)\mathrm{End}(E_{\overline{\Q}}) = Z\Z    (no potential complex multiplication)
Copy content comment:Test for Complex Multiplication
 
Copy content sage:E.has_cm(), E.cm_discriminant()
 
Copy content magma:HasComplexMultiplication(E);
 
Sato-Tate group: ST(E)\mathrm{ST}(E) = SU(2)\mathrm{SU}(2)

BSD invariants

Analytic rank: ranr_{\mathrm{an}}= 1 1
Copy content comment:Compute the Mordell-Weil rank
 
Copy content sage:E.rank()
 
Copy content magma:Rank(E);
 
Mordell-Weil rank: rr = 11
Regulator: Reg(E/K)\mathrm{Reg}(E/K) 5.2523051886693744665081747252624554907 5.2523051886693744665081747252624554907
Néron-Tate Regulator: RegNT(E/K)\mathrm{Reg}_{\mathrm{NT}}(E/K) 10.504610377338748933016349450524910981 10.504610377338748933016349450524910981
Global period: Ω(E/K)\Omega(E/K) 8.6259178240387304854320025847014532740 8.6259178240387304854320025847014532740
Tamagawa product: pcp\prod_{\frak{p}}c_{\frak{p}}= 3 3  =  31113\cdot1\cdot1\cdot1
Torsion order: #E(K)tor\#E(K)_{\mathrm{tor}}= 33
Special value: L(r)(E/K,1)/r!L^{(r)}(E/K,1)/r! 3.5845515974140687728821915487463018989 3.5845515974140687728821915487463018989
Analytic order of Ш: Шan{}_{\mathrm{an}}= 1 1 (rounded)

BSD formula

3.584551597L(E/K,1)=?#Ш(E/K)Ω(E/K)RegNT(E/K)pcp#E(K)tor2dK1/218.62591810.5046103328.4261503.584551597\begin{aligned}3.584551597 \approx L'(E/K,1) & \overset{?}{=} \frac{ \# Ш(E/K) \cdot \Omega(E/K) \cdot \mathrm{Reg}_{\mathrm{NT}}(E/K) \cdot \prod_{\mathfrak{p}} c_{\mathfrak{p}} } { \#E(K)_{\mathrm{tor}}^2 \cdot \left|d_K\right|^{1/2} } \\ & \approx \frac{ 1 \cdot 8.625918 \cdot 10.504610 \cdot 3 } { {3^2 \cdot 8.426150} } \\ & \approx 3.584551597 \end{aligned}

Local data at primes of bad reduction

Copy content comment:Compute the local reduction data at primes of bad reduction
 
Copy content sage:E.local_data()
 
Copy content magma:LocalInformation(E);
 

This elliptic curve is not semistable. There are 3 primes p\frak{p} of bad reduction. Primes of good reduction for the curve but which divide the discriminant of the model above (if any) are included.

p\mathfrak{p} N(p)N(\mathfrak{p}) Tamagawa number Kodaira symbol Reduction type Root number ordp(N\mathrm{ord}_{\mathfrak{p}}(\mathfrak{N}) ordp(Dmin\mathrm{ord}_{\mathfrak{p}}(\mathfrak{D}_{\mathrm{min}}) ordp(den(j))\mathrm{ord}_{\mathfrak{p}}(\mathrm{den}(j))
(2,a)(2,a) 22 33 I3I_{3} Split multiplicative 1-1 11 33 33
(2,a+1)(2,a+1) 22 11 I3I_{3} Non-split multiplicative 11 11 33 33
(3,a)(3,a) 33 11 I0I_0^{*} Additive 1-1 22 66 00
(5,a+1)(5,a+1) 55 11 I0I_0 Good 11 00 00 00

Galois Representations

The mod p p Galois Representation has maximal image for all primes p<1000 p < 1000 except those listed.

prime Image of Galois Representation
33 3B.1.1

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree dd for d=d= 3.
Its isogeny class 36.4-c consists of curves linked by isogenies of degrees dividing 9.

Base change

This elliptic curve is a Q\Q-curve.

It is not the base change of an elliptic curve defined over any subfield.