Learn more

Refine search


Results (38 matches)

  displayed columns for results
Label Class Base field Conductor norm Rank Torsion CM Sato-Tate Regulator Period Leading coeff j-invariant Weierstrass coefficients Weierstrass equation
9216.5-a1 9216.5-a \(\Q(\sqrt{-7}) \) \( 2^{10} \cdot 3^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $0.217459622$ $2.260906850$ 2.973255716 \( -\frac{4913}{3} a - \frac{9826}{3} \) \( \bigl[0\) , \( a - 1\) , \( 0\) , \( -6 a + 11\) , \( 9 a + 13\bigr] \) ${y}^2={x}^{3}+\left(a-1\right){x}^{2}+\left(-6a+11\right){x}+9a+13$
9216.5-a2 9216.5-a \(\Q(\sqrt{-7}) \) \( 2^{10} \cdot 3^{2} \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $0.434919245$ $2.260906850$ 2.973255716 \( \frac{13685}{9} a - \frac{34846}{9} \) \( \bigl[0\) , \( -a\) , \( 0\) , \( 8 a - 8\) , \( -12 a + 8\bigr] \) ${y}^2={x}^{3}-a{x}^{2}+\left(8a-8\right){x}-12a+8$
9216.5-a3 9216.5-a \(\Q(\sqrt{-7}) \) \( 2^{10} \cdot 3^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $0.869838490$ $2.260906850$ 2.973255716 \( -\frac{5525}{9} a - \frac{136882}{81} \) \( \bigl[0\) , \( -a + 1\) , \( 0\) , \( -7 a + 6\) , \( 2 a - 18\bigr] \) ${y}^2={x}^{3}+\left(-a+1\right){x}^{2}+\left(-7a+6\right){x}+2a-18$
9216.5-a4 9216.5-a \(\Q(\sqrt{-7}) \) \( 2^{10} \cdot 3^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $0.869838490$ $1.130453425$ 2.973255716 \( -\frac{35168257}{3} a + \frac{48883966}{3} \) \( \bigl[0\) , \( -a\) , \( 0\) , \( 128 a - 128\) , \( -684 a + 200\bigr] \) ${y}^2={x}^{3}-a{x}^{2}+\left(128a-128\right){x}-684a+200$
9216.5-b1 9216.5-b \(\Q(\sqrt{-7}) \) \( 2^{10} \cdot 3^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $4.218198954$ 1.594329344 \( -\frac{13888}{3} a + \frac{2240}{3} \) \( \bigl[0\) , \( -a + 1\) , \( 0\) , \( -3 a + 1\) , \( -2 a + 1\bigr] \) ${y}^2={x}^{3}+\left(-a+1\right){x}^{2}+\left(-3a+1\right){x}-2a+1$
9216.5-b2 9216.5-b \(\Q(\sqrt{-7}) \) \( 2^{10} \cdot 3^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $4.218198954$ 1.594329344 \( \frac{1168}{3} a - \frac{7264}{9} \) \( \bigl[0\) , \( a\) , \( 0\) , \( -a - 1\) , \( -2 a + 2\bigr] \) ${y}^2={x}^{3}+a{x}^{2}+\left(-a-1\right){x}-2a+2$
9216.5-c1 9216.5-c \(\Q(\sqrt{-7}) \) \( 2^{10} \cdot 3^{2} \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $0.636060484$ $1.688254472$ 3.246962639 \( -\frac{1771}{36} a + \frac{26425}{18} \) \( \bigl[0\) , \( -1\) , \( 0\) , \( -3 a + 17\) , \( 3 a - 17\bigr] \) ${y}^2={x}^{3}-{x}^{2}+\left(-3a+17\right){x}+3a-17$
9216.5-c2 9216.5-c \(\Q(\sqrt{-7}) \) \( 2^{10} \cdot 3^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $0.318030242$ $1.688254472$ 3.246962639 \( \frac{3191}{48} a + \frac{48539}{24} \) \( \bigl[0\) , \( -a - 1\) , \( 0\) , \( 14 a - 5\) , \( -13 a + 5\bigr] \) ${y}^2={x}^{3}+\left(-a-1\right){x}^{2}+\left(14a-5\right){x}-13a+5$
9216.5-c3 9216.5-c \(\Q(\sqrt{-7}) \) \( 2^{10} \cdot 3^{2} \) $1$ $\Z/4\Z$ $\mathrm{SU}(2)$ $1.272120968$ $0.844127236$ 3.246962639 \( \frac{8978189}{54} a - \frac{3246631}{81} \) \( \bigl[0\) , \( -1\) , \( 0\) , \( -3 a + 177\) , \( 675 a - 369\bigr] \) ${y}^2={x}^{3}-{x}^{2}+\left(-3a+177\right){x}+675a-369$
9216.5-c4 9216.5-c \(\Q(\sqrt{-7}) \) \( 2^{10} \cdot 3^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $0.318030242$ $1.688254472$ 3.246962639 \( -\frac{1410889}{6} a + \frac{497819}{3} \) \( \bigl[0\) , \( a + 1\) , \( 0\) , \( 30 a + 11\) , \( 33 a - 141\bigr] \) ${y}^2={x}^{3}+\left(a+1\right){x}^{2}+\left(30a+11\right){x}+33a-141$
9216.5-d1 9216.5-d \(\Q(\sqrt{-7}) \) \( 2^{10} \cdot 3^{2} \) 0 $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $0.751467140$ 1.136111527 \( \frac{4913}{1296} \) \( \bigl[0\) , \( -a + 1\) , \( 0\) , \( -6 a + 11\) , \( -213 a + 251\bigr] \) ${y}^2={x}^{3}+\left(-a+1\right){x}^{2}+\left(-6a+11\right){x}-213a+251$
9216.5-d2 9216.5-d \(\Q(\sqrt{-7}) \) \( 2^{10} \cdot 3^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $0.751467140$ 1.136111527 \( -\frac{43993943}{196608} a + \frac{140725583}{65536} \) \( \bigl[0\) , \( a - 1\) , \( 0\) , \( 58 a + 11\) , \( -23 a + 109\bigr] \) ${y}^2={x}^{3}+\left(a-1\right){x}^{2}+\left(58a+11\right){x}-23a+109$
9216.5-d3 9216.5-d \(\Q(\sqrt{-7}) \) \( 2^{10} \cdot 3^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $0.751467140$ 1.136111527 \( \frac{43993943}{196608} a + \frac{189091403}{98304} \) \( \bigl[0\) , \( a - 1\) , \( 0\) , \( -38 a - 53\) , \( -119 a + 45\bigr] \) ${y}^2={x}^{3}+\left(a-1\right){x}^{2}+\left(-38a-53\right){x}-119a+45$
9216.5-d4 9216.5-d \(\Q(\sqrt{-7}) \) \( 2^{10} \cdot 3^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $0.375733570$ 1.136111527 \( \frac{838561807}{26244} \) \( \bigl[0\) , \( -a + 1\) , \( 0\) , \( 314 a - 629\) , \( -3733 a + 4731\bigr] \) ${y}^2={x}^{3}+\left(-a+1\right){x}^{2}+\left(314a-629\right){x}-3733a+4731$
9216.5-d5 9216.5-d \(\Q(\sqrt{-7}) \) \( 2^{10} \cdot 3^{2} \) 0 $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $0.751467140$ 1.136111527 \( -\frac{56620795}{2304} a + \frac{85821697}{1152} \) \( \bigl[0\) , \( -a\) , \( 0\) , \( -128 a + 128\) , \( -172 a + 904\bigr] \) ${y}^2={x}^{3}-a{x}^{2}+\left(-128a+128\right){x}-172a+904$
9216.5-d6 9216.5-d \(\Q(\sqrt{-7}) \) \( 2^{10} \cdot 3^{2} \) 0 $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $0.751467140$ 1.136111527 \( \frac{56620795}{2304} a + \frac{115022599}{2304} \) \( \bigl[0\) , \( a\) , \( 0\) , \( -32 a + 192\) , \( -608 a + 32\bigr] \) ${y}^2={x}^{3}+a{x}^{2}+\left(-32a+192\right){x}-608a+32$
9216.5-d7 9216.5-d \(\Q(\sqrt{-7}) \) \( 2^{10} \cdot 3^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $0.375733570$ 1.136111527 \( -\frac{145011769343}{48} a + \frac{101553555457}{24} \) \( \bigl[0\) , \( -a\) , \( 0\) , \( -2048 a + 2048\) , \( -10924 a + 62344\bigr] \) ${y}^2={x}^{3}-a{x}^{2}+\left(-2048a+2048\right){x}-10924a+62344$
9216.5-d8 9216.5-d \(\Q(\sqrt{-7}) \) \( 2^{10} \cdot 3^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $0.375733570$ 1.136111527 \( \frac{145011769343}{48} a + \frac{19365113857}{16} \) \( \bigl[0\) , \( a\) , \( 0\) , \( -512 a + 3072\) , \( -41696 a + 800\bigr] \) ${y}^2={x}^{3}+a{x}^{2}+\left(-512a+3072\right){x}-41696a+800$
9216.5-e1 9216.5-e \(\Q(\sqrt{-7}) \) \( 2^{10} \cdot 3^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $0.642644632$ 1.943174717 \( \frac{207646}{6561} \) \( \bigl[0\) , \( -a\) , \( 0\) , \( 16 a - 32\) , \( 180 a + 360\bigr] \) ${y}^2={x}^{3}-a{x}^{2}+\left(16a-32\right){x}+180a+360$
9216.5-e2 9216.5-e \(\Q(\sqrt{-7}) \) \( 2^{10} \cdot 3^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $5.141157056$ 1.943174717 \( \frac{2048}{3} \) \( \bigl[0\) , \( -a\) , \( 0\) , \( a - 2\) , \( 0\bigr] \) ${y}^2={x}^{3}-a{x}^{2}+\left(a-2\right){x}$
9216.5-e3 9216.5-e \(\Q(\sqrt{-7}) \) \( 2^{10} \cdot 3^{2} \) 0 $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $2.570578528$ 1.943174717 \( \frac{35152}{9} \) \( \bigl[0\) , \( -a\) , \( 0\) , \( -4 a + 8\) , \( -4 a - 8\bigr] \) ${y}^2={x}^{3}-a{x}^{2}+\left(-4a+8\right){x}-4a-8$
9216.5-e4 9216.5-e \(\Q(\sqrt{-7}) \) \( 2^{10} \cdot 3^{2} \) 0 $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $1.285289264$ 1.943174717 \( \frac{1556068}{81} \) \( \bigl[0\) , \( -a\) , \( 0\) , \( -24 a + 48\) , \( 36 a + 72\bigr] \) ${y}^2={x}^{3}-a{x}^{2}+\left(-24a+48\right){x}+36a+72$
9216.5-e5 9216.5-e \(\Q(\sqrt{-7}) \) \( 2^{10} \cdot 3^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $1.285289264$ 1.943174717 \( \frac{28756228}{3} \) \( \bigl[0\) , \( -a\) , \( 0\) , \( -64 a + 128\) , \( -220 a - 440\bigr] \) ${y}^2={x}^{3}-a{x}^{2}+\left(-64a+128\right){x}-220a-440$
9216.5-e6 9216.5-e \(\Q(\sqrt{-7}) \) \( 2^{10} \cdot 3^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $0.642644632$ 1.943174717 \( \frac{3065617154}{9} \) \( \bigl[0\) , \( -a\) , \( 0\) , \( -384 a + 768\) , \( 2772 a + 5544\bigr] \) ${y}^2={x}^{3}-a{x}^{2}+\left(-384a+768\right){x}+2772a+5544$
9216.5-f1 9216.5-f \(\Q(\sqrt{-7}) \) \( 2^{10} \cdot 3^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $0.438567815$ $2.713241112$ 3.598041044 \( -\frac{276500}{3} a - \frac{53000}{3} \) \( \bigl[0\) , \( -a\) , \( 0\) , \( 12 a - 4\) , \( -12 a - 8\bigr] \) ${y}^2={x}^{3}-a{x}^{2}+\left(12a-4\right){x}-12a-8$
9216.5-f2 9216.5-f \(\Q(\sqrt{-7}) \) \( 2^{10} \cdot 3^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $1.754271260$ $2.713241112$ 3.598041044 \( \frac{276500}{3} a - \frac{329500}{3} \) \( \bigl[0\) , \( a\) , \( 0\) , \( -3 a - 14\) , \( 2 a + 20\bigr] \) ${y}^2={x}^{3}+a{x}^{2}+\left(-3a-14\right){x}+2a+20$
9216.5-f3 9216.5-f \(\Q(\sqrt{-7}) \) \( 2^{10} \cdot 3^{2} \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $0.877135630$ $2.713241112$ 3.598041044 \( \frac{2000}{9} \) \( \bigl[0\) , \( a - 1\) , \( 0\) , \( -2 a + 3\) , \( -3 a + 5\bigr] \) ${y}^2={x}^{3}+\left(a-1\right){x}^{2}+\left(-2a+3\right){x}-3a+5$
9216.5-f4 9216.5-f \(\Q(\sqrt{-7}) \) \( 2^{10} \cdot 3^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $0.438567815$ $1.356620556$ 3.598041044 \( \frac{665500}{81} \) \( \bigl[0\) , \( a - 1\) , \( 0\) , \( 18 a - 37\) , \( -63 a + 61\bigr] \) ${y}^2={x}^{3}+\left(a-1\right){x}^{2}+\left(18a-37\right){x}-63a+61$
9216.5-g1 9216.5-g \(\Q(\sqrt{-7}) \) \( 2^{10} \cdot 3^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $4.811886447$ 1.818722125 \( \frac{16384}{3} \) \( \bigl[0\) , \( a - 1\) , \( 0\) , \( a - 3\) , \( -1\bigr] \) ${y}^2={x}^{3}+\left(a-1\right){x}^{2}+\left(a-3\right){x}-1$
9216.5-g2 9216.5-g \(\Q(\sqrt{-7}) \) \( 2^{10} \cdot 3^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $2.405943223$ 1.818722125 \( \frac{109744}{9} \) \( \bigl[0\) , \( a - 1\) , \( 0\) , \( 6 a - 13\) , \( -15 a + 13\bigr] \) ${y}^2={x}^{3}+\left(a-1\right){x}^{2}+\left(6a-13\right){x}-15a+13$
9216.5-h1 9216.5-h \(\Q(\sqrt{-7}) \) \( 2^{10} \cdot 3^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $0.880101430$ $2.676576147$ 3.561420886 \( -\frac{27272}{3} a - 4712 \) \( \bigl[0\) , \( -1\) , \( 0\) , \( -7 a + 9\) , \( 3 a - 17\bigr] \) ${y}^2={x}^{3}-{x}^{2}+\left(-7a+9\right){x}+3a-17$
9216.5-h2 9216.5-h \(\Q(\sqrt{-7}) \) \( 2^{10} \cdot 3^{2} \) $1$ $\Z/4\Z$ $\mathrm{SU}(2)$ $0.880101430$ $1.338288073$ 3.561420886 \( \frac{188902}{27} a - \frac{424036}{81} \) \( \bigl[0\) , \( a + 1\) , \( 0\) , \( -2 a - 37\) , \( -31 a - 93\bigr] \) ${y}^2={x}^{3}+\left(a+1\right){x}^{2}+\left(-2a-37\right){x}-31a-93$
9216.5-h3 9216.5-h \(\Q(\sqrt{-7}) \) \( 2^{10} \cdot 3^{2} \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $0.440050715$ $2.676576147$ 3.561420886 \( -\frac{1484}{9} a - \frac{3320}{9} \) \( \bigl[0\) , \( a + 1\) , \( 0\) , \( -2 a + 3\) , \( a - 5\bigr] \) ${y}^2={x}^{3}+\left(a+1\right){x}^{2}+\left(-2a+3\right){x}+a-5$
9216.5-h4 9216.5-h \(\Q(\sqrt{-7}) \) \( 2^{10} \cdot 3^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $0.880101430$ $2.676576147$ 3.561420886 \( \frac{1188866}{3} a + 802556 \) \( \bigl[0\) , \( 1\) , \( 0\) , \( 4 a + 20\) , \( 30 a - 22\bigr] \) ${y}^2={x}^{3}+{x}^{2}+\left(4a+20\right){x}+30a-22$
9216.5-i1 9216.5-i \(\Q(\sqrt{-7}) \) \( 2^{10} \cdot 3^{2} \) 0 $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $1.688254472$ 2.552400847 \( \frac{1771}{36} a + \frac{51079}{36} \) \( \bigl[0\) , \( -a - 1\) , \( 0\) , \( -10 a + 11\) , \( 11 a - 11\bigr] \) ${y}^2={x}^{3}+\left(-a-1\right){x}^{2}+\left(-10a+11\right){x}+11a-11$
9216.5-i2 9216.5-i \(\Q(\sqrt{-7}) \) \( 2^{10} \cdot 3^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $1.688254472$ 2.552400847 \( -\frac{3191}{48} a + \frac{33423}{16} \) \( \bigl[0\) , \( -1\) , \( 0\) , \( -3 a - 15\) , \( 3 a + 15\bigr] \) ${y}^2={x}^{3}-{x}^{2}+\left(-3a-15\right){x}+3a+15$
9216.5-i3 9216.5-i \(\Q(\sqrt{-7}) \) \( 2^{10} \cdot 3^{2} \) 0 $\Z/4\Z$ $\mathrm{SU}(2)$ $1$ $0.844127236$ 2.552400847 \( -\frac{8978189}{54} a + \frac{20441305}{162} \) \( \bigl[0\) , \( -a - 1\) , \( 0\) , \( -130 a + 91\) , \( 419 a - 1051\bigr] \) ${y}^2={x}^{3}+\left(-a-1\right){x}^{2}+\left(-130a+91\right){x}+419a-1051$
9216.5-i4 9216.5-i \(\Q(\sqrt{-7}) \) \( 2^{10} \cdot 3^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $1.688254472$ 2.552400847 \( \frac{1410889}{6} a - \frac{138417}{2} \) \( \bigl[0\) , \( 1\) , \( 0\) , \( -23 a - 23\) , \( 73 a + 9\bigr] \) ${y}^2={x}^{3}+{x}^{2}+\left(-23a-23\right){x}+73a+9$
  displayed columns for results

  *The rank, regulator and analytic order of Ш are not known for all curves in the database; curves for which these are unknown will not appear in searches specifying one of these quantities.