Label |
Class |
Class size |
Class degree |
Base field |
Field degree |
Field signature |
Conductor |
Conductor norm |
Discriminant norm |
Root analytic conductor |
Bad primes |
Rank |
Torsion |
CM |
CM |
Sato-Tate |
$\Q$-curve |
Base change |
Semistable |
Potentially good |
Nonmax $\ell$ |
mod-$\ell$ images |
$Ш_{\textrm{an}}$ |
Tamagawa |
Regulator |
Period |
Leading coeff |
j-invariant |
Weierstrass coefficients |
Weierstrass equation |
9216.5-a1 |
9216.5-a |
$4$ |
$4$ |
\(\Q(\sqrt{-7}) \) |
$2$ |
$[0, 1]$ |
9216.5 |
\( 2^{10} \cdot 3^{2} \) |
\( 2^{27} \cdot 3^{2} \) |
$2.31645$ |
$(a), (-a+1), (3)$ |
$1$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2$ |
2B |
$1$ |
\( 2^{4} \) |
$0.217459622$ |
$2.260906850$ |
2.973255716 |
\( -\frac{4913}{3} a - \frac{9826}{3} \) |
\( \bigl[0\) , \( a - 1\) , \( 0\) , \( -6 a + 11\) , \( 9 a + 13\bigr] \) |
${y}^2={x}^{3}+\left(a-1\right){x}^{2}+\left(-6a+11\right){x}+9a+13$ |
9216.5-a2 |
9216.5-a |
$4$ |
$4$ |
\(\Q(\sqrt{-7}) \) |
$2$ |
$[0, 1]$ |
9216.5 |
\( 2^{10} \cdot 3^{2} \) |
\( 2^{24} \cdot 3^{4} \) |
$2.31645$ |
$(a), (-a+1), (3)$ |
$1$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2$ |
2Cs |
$1$ |
\( 2^{5} \) |
$0.434919245$ |
$2.260906850$ |
2.973255716 |
\( \frac{13685}{9} a - \frac{34846}{9} \) |
\( \bigl[0\) , \( -a\) , \( 0\) , \( 8 a - 8\) , \( -12 a + 8\bigr] \) |
${y}^2={x}^{3}-a{x}^{2}+\left(8a-8\right){x}-12a+8$ |
9216.5-a3 |
9216.5-a |
$4$ |
$4$ |
\(\Q(\sqrt{-7}) \) |
$2$ |
$[0, 1]$ |
9216.5 |
\( 2^{10} \cdot 3^{2} \) |
\( 2^{18} \cdot 3^{8} \) |
$2.31645$ |
$(a), (-a+1), (3)$ |
$1$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2$ |
2B |
$1$ |
\( 2^{2} \) |
$0.869838490$ |
$2.260906850$ |
2.973255716 |
\( -\frac{5525}{9} a - \frac{136882}{81} \) |
\( \bigl[0\) , \( -a + 1\) , \( 0\) , \( -7 a + 6\) , \( 2 a - 18\bigr] \) |
${y}^2={x}^{3}+\left(-a+1\right){x}^{2}+\left(-7a+6\right){x}+2a-18$ |
9216.5-a4 |
9216.5-a |
$4$ |
$4$ |
\(\Q(\sqrt{-7}) \) |
$2$ |
$[0, 1]$ |
9216.5 |
\( 2^{10} \cdot 3^{2} \) |
\( 2^{27} \cdot 3^{2} \) |
$2.31645$ |
$(a), (-a+1), (3)$ |
$1$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2$ |
2B |
$1$ |
\( 2^{3} \) |
$0.869838490$ |
$1.130453425$ |
2.973255716 |
\( -\frac{35168257}{3} a + \frac{48883966}{3} \) |
\( \bigl[0\) , \( -a\) , \( 0\) , \( 128 a - 128\) , \( -684 a + 200\bigr] \) |
${y}^2={x}^{3}-a{x}^{2}+\left(128a-128\right){x}-684a+200$ |
9216.5-b1 |
9216.5-b |
$2$ |
$2$ |
\(\Q(\sqrt{-7}) \) |
$2$ |
$[0, 1]$ |
9216.5 |
\( 2^{10} \cdot 3^{2} \) |
\( 2^{16} \cdot 3^{2} \) |
$2.31645$ |
$(a), (-a+1), (3)$ |
0 |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2$ |
2B |
$1$ |
\( 2 \) |
$1$ |
$4.218198954$ |
1.594329344 |
\( -\frac{13888}{3} a + \frac{2240}{3} \) |
\( \bigl[0\) , \( -a + 1\) , \( 0\) , \( -3 a + 1\) , \( -2 a + 1\bigr] \) |
${y}^2={x}^{3}+\left(-a+1\right){x}^{2}+\left(-3a+1\right){x}-2a+1$ |
9216.5-b2 |
9216.5-b |
$2$ |
$2$ |
\(\Q(\sqrt{-7}) \) |
$2$ |
$[0, 1]$ |
9216.5 |
\( 2^{10} \cdot 3^{2} \) |
\( 2^{14} \cdot 3^{4} \) |
$2.31645$ |
$(a), (-a+1), (3)$ |
0 |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2$ |
2B |
$1$ |
\( 2 \) |
$1$ |
$4.218198954$ |
1.594329344 |
\( \frac{1168}{3} a - \frac{7264}{9} \) |
\( \bigl[0\) , \( a\) , \( 0\) , \( -a - 1\) , \( -2 a + 2\bigr] \) |
${y}^2={x}^{3}+a{x}^{2}+\left(-a-1\right){x}-2a+2$ |
9216.5-c1 |
9216.5-c |
$4$ |
$4$ |
\(\Q(\sqrt{-7}) \) |
$2$ |
$[0, 1]$ |
9216.5 |
\( 2^{10} \cdot 3^{2} \) |
\( 2^{30} \cdot 3^{4} \) |
$2.31645$ |
$(a), (-a+1), (3)$ |
$1$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2$ |
2Cs |
$1$ |
\( 2^{5} \) |
$0.636060484$ |
$1.688254472$ |
3.246962639 |
\( -\frac{1771}{36} a + \frac{26425}{18} \) |
\( \bigl[0\) , \( -1\) , \( 0\) , \( -3 a + 17\) , \( 3 a - 17\bigr] \) |
${y}^2={x}^{3}-{x}^{2}+\left(-3a+17\right){x}+3a-17$ |
9216.5-c2 |
9216.5-c |
$4$ |
$4$ |
\(\Q(\sqrt{-7}) \) |
$2$ |
$[0, 1]$ |
9216.5 |
\( 2^{10} \cdot 3^{2} \) |
\( 2^{33} \cdot 3^{2} \) |
$2.31645$ |
$(a), (-a+1), (3)$ |
$1$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2$ |
2B |
$1$ |
\( 2^{4} \) |
$0.318030242$ |
$1.688254472$ |
3.246962639 |
\( \frac{3191}{48} a + \frac{48539}{24} \) |
\( \bigl[0\) , \( -a - 1\) , \( 0\) , \( 14 a - 5\) , \( -13 a + 5\bigr] \) |
${y}^2={x}^{3}+\left(-a-1\right){x}^{2}+\left(14a-5\right){x}-13a+5$ |
9216.5-c3 |
9216.5-c |
$4$ |
$4$ |
\(\Q(\sqrt{-7}) \) |
$2$ |
$[0, 1]$ |
9216.5 |
\( 2^{10} \cdot 3^{2} \) |
\( 2^{30} \cdot 3^{8} \) |
$2.31645$ |
$(a), (-a+1), (3)$ |
$1$ |
$\Z/4\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2$ |
2B |
$1$ |
\( 2^{5} \) |
$1.272120968$ |
$0.844127236$ |
3.246962639 |
\( \frac{8978189}{54} a - \frac{3246631}{81} \) |
\( \bigl[0\) , \( -1\) , \( 0\) , \( -3 a + 177\) , \( 675 a - 369\bigr] \) |
${y}^2={x}^{3}-{x}^{2}+\left(-3a+177\right){x}+675a-369$ |
9216.5-c4 |
9216.5-c |
$4$ |
$4$ |
\(\Q(\sqrt{-7}) \) |
$2$ |
$[0, 1]$ |
9216.5 |
\( 2^{10} \cdot 3^{2} \) |
\( 2^{27} \cdot 3^{2} \) |
$2.31645$ |
$(a), (-a+1), (3)$ |
$1$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2$ |
2B |
$1$ |
\( 2^{4} \) |
$0.318030242$ |
$1.688254472$ |
3.246962639 |
\( -\frac{1410889}{6} a + \frac{497819}{3} \) |
\( \bigl[0\) , \( a + 1\) , \( 0\) , \( 30 a + 11\) , \( 33 a - 141\bigr] \) |
${y}^2={x}^{3}+\left(a+1\right){x}^{2}+\left(30a+11\right){x}+33a-141$ |
9216.5-d1 |
9216.5-d |
$8$ |
$16$ |
\(\Q(\sqrt{-7}) \) |
$2$ |
$[0, 1]$ |
9216.5 |
\( 2^{10} \cdot 3^{2} \) |
\( 2^{38} \cdot 3^{8} \) |
$2.31645$ |
$(a), (-a+1), (3)$ |
0 |
$\Z/2\Z\oplus\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
$2$ |
2Cs |
$1$ |
\( 2^{5} \) |
$1$ |
$0.751467140$ |
1.136111527 |
\( \frac{4913}{1296} \) |
\( \bigl[0\) , \( -a + 1\) , \( 0\) , \( -6 a + 11\) , \( -213 a + 251\bigr] \) |
${y}^2={x}^{3}+\left(-a+1\right){x}^{2}+\left(-6a+11\right){x}-213a+251$ |
9216.5-d2 |
9216.5-d |
$8$ |
$16$ |
\(\Q(\sqrt{-7}) \) |
$2$ |
$[0, 1]$ |
9216.5 |
\( 2^{10} \cdot 3^{2} \) |
\( 2^{47} \cdot 3^{2} \) |
$2.31645$ |
$(a), (-a+1), (3)$ |
0 |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
$2$ |
2B |
$1$ |
\( 2^{3} \) |
$1$ |
$0.751467140$ |
1.136111527 |
\( -\frac{43993943}{196608} a + \frac{140725583}{65536} \) |
\( \bigl[0\) , \( a - 1\) , \( 0\) , \( 58 a + 11\) , \( -23 a + 109\bigr] \) |
${y}^2={x}^{3}+\left(a-1\right){x}^{2}+\left(58a+11\right){x}-23a+109$ |
9216.5-d3 |
9216.5-d |
$8$ |
$16$ |
\(\Q(\sqrt{-7}) \) |
$2$ |
$[0, 1]$ |
9216.5 |
\( 2^{10} \cdot 3^{2} \) |
\( 2^{47} \cdot 3^{2} \) |
$2.31645$ |
$(a), (-a+1), (3)$ |
0 |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
$2$ |
2B |
$1$ |
\( 2^{3} \) |
$1$ |
$0.751467140$ |
1.136111527 |
\( \frac{43993943}{196608} a + \frac{189091403}{98304} \) |
\( \bigl[0\) , \( a - 1\) , \( 0\) , \( -38 a - 53\) , \( -119 a + 45\bigr] \) |
${y}^2={x}^{3}+\left(a-1\right){x}^{2}+\left(-38a-53\right){x}-119a+45$ |
9216.5-d4 |
9216.5-d |
$8$ |
$16$ |
\(\Q(\sqrt{-7}) \) |
$2$ |
$[0, 1]$ |
9216.5 |
\( 2^{10} \cdot 3^{2} \) |
\( 2^{34} \cdot 3^{16} \) |
$2.31645$ |
$(a), (-a+1), (3)$ |
0 |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
$2$ |
2B |
$1$ |
\( 2^{4} \) |
$1$ |
$0.375733570$ |
1.136111527 |
\( \frac{838561807}{26244} \) |
\( \bigl[0\) , \( -a + 1\) , \( 0\) , \( 314 a - 629\) , \( -3733 a + 4731\bigr] \) |
${y}^2={x}^{3}+\left(-a+1\right){x}^{2}+\left(314a-629\right){x}-3733a+4731$ |
9216.5-d5 |
9216.5-d |
$8$ |
$16$ |
\(\Q(\sqrt{-7}) \) |
$2$ |
$[0, 1]$ |
9216.5 |
\( 2^{10} \cdot 3^{2} \) |
\( 2^{40} \cdot 3^{4} \) |
$2.31645$ |
$(a), (-a+1), (3)$ |
0 |
$\Z/2\Z\oplus\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
$2$ |
2Cs |
$1$ |
\( 2^{5} \) |
$1$ |
$0.751467140$ |
1.136111527 |
\( -\frac{56620795}{2304} a + \frac{85821697}{1152} \) |
\( \bigl[0\) , \( -a\) , \( 0\) , \( -128 a + 128\) , \( -172 a + 904\bigr] \) |
${y}^2={x}^{3}-a{x}^{2}+\left(-128a+128\right){x}-172a+904$ |
9216.5-d6 |
9216.5-d |
$8$ |
$16$ |
\(\Q(\sqrt{-7}) \) |
$2$ |
$[0, 1]$ |
9216.5 |
\( 2^{10} \cdot 3^{2} \) |
\( 2^{40} \cdot 3^{4} \) |
$2.31645$ |
$(a), (-a+1), (3)$ |
0 |
$\Z/2\Z\oplus\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
$2$ |
2Cs |
$1$ |
\( 2^{5} \) |
$1$ |
$0.751467140$ |
1.136111527 |
\( \frac{56620795}{2304} a + \frac{115022599}{2304} \) |
\( \bigl[0\) , \( a\) , \( 0\) , \( -32 a + 192\) , \( -608 a + 32\bigr] \) |
${y}^2={x}^{3}+a{x}^{2}+\left(-32a+192\right){x}-608a+32$ |
9216.5-d7 |
9216.5-d |
$8$ |
$16$ |
\(\Q(\sqrt{-7}) \) |
$2$ |
$[0, 1]$ |
9216.5 |
\( 2^{10} \cdot 3^{2} \) |
\( 2^{35} \cdot 3^{2} \) |
$2.31645$ |
$(a), (-a+1), (3)$ |
0 |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
$2$ |
2B |
$4$ |
\( 2^{2} \) |
$1$ |
$0.375733570$ |
1.136111527 |
\( -\frac{145011769343}{48} a + \frac{101553555457}{24} \) |
\( \bigl[0\) , \( -a\) , \( 0\) , \( -2048 a + 2048\) , \( -10924 a + 62344\bigr] \) |
${y}^2={x}^{3}-a{x}^{2}+\left(-2048a+2048\right){x}-10924a+62344$ |
9216.5-d8 |
9216.5-d |
$8$ |
$16$ |
\(\Q(\sqrt{-7}) \) |
$2$ |
$[0, 1]$ |
9216.5 |
\( 2^{10} \cdot 3^{2} \) |
\( 2^{35} \cdot 3^{2} \) |
$2.31645$ |
$(a), (-a+1), (3)$ |
0 |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
$2$ |
2B |
$1$ |
\( 2^{4} \) |
$1$ |
$0.375733570$ |
1.136111527 |
\( \frac{145011769343}{48} a + \frac{19365113857}{16} \) |
\( \bigl[0\) , \( a\) , \( 0\) , \( -512 a + 3072\) , \( -41696 a + 800\bigr] \) |
${y}^2={x}^{3}+a{x}^{2}+\left(-512a+3072\right){x}-41696a+800$ |
9216.5-e1 |
9216.5-e |
$6$ |
$8$ |
\(\Q(\sqrt{-7}) \) |
$2$ |
$[0, 1]$ |
9216.5 |
\( 2^{10} \cdot 3^{2} \) |
\( 2^{28} \cdot 3^{16} \) |
$2.31645$ |
$(a), (-a+1), (3)$ |
0 |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
$2$ |
2B |
$1$ |
\( 2^{4} \) |
$1$ |
$0.642644632$ |
1.943174717 |
\( \frac{207646}{6561} \) |
\( \bigl[0\) , \( -a\) , \( 0\) , \( 16 a - 32\) , \( 180 a + 360\bigr] \) |
${y}^2={x}^{3}-a{x}^{2}+\left(16a-32\right){x}+180a+360$ |
9216.5-e2 |
9216.5-e |
$6$ |
$8$ |
\(\Q(\sqrt{-7}) \) |
$2$ |
$[0, 1]$ |
9216.5 |
\( 2^{10} \cdot 3^{2} \) |
\( 2^{14} \cdot 3^{2} \) |
$2.31645$ |
$(a), (-a+1), (3)$ |
0 |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
$2$ |
2B |
$1$ |
\( 2 \) |
$1$ |
$5.141157056$ |
1.943174717 |
\( \frac{2048}{3} \) |
\( \bigl[0\) , \( -a\) , \( 0\) , \( a - 2\) , \( 0\bigr] \) |
${y}^2={x}^{3}-a{x}^{2}+\left(a-2\right){x}$ |
9216.5-e3 |
9216.5-e |
$6$ |
$8$ |
\(\Q(\sqrt{-7}) \) |
$2$ |
$[0, 1]$ |
9216.5 |
\( 2^{10} \cdot 3^{2} \) |
\( 2^{22} \cdot 3^{4} \) |
$2.31645$ |
$(a), (-a+1), (3)$ |
0 |
$\Z/2\Z\oplus\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
$2$ |
2Cs |
$1$ |
\( 2^{4} \) |
$1$ |
$2.570578528$ |
1.943174717 |
\( \frac{35152}{9} \) |
\( \bigl[0\) , \( -a\) , \( 0\) , \( -4 a + 8\) , \( -4 a - 8\bigr] \) |
${y}^2={x}^{3}-a{x}^{2}+\left(-4a+8\right){x}-4a-8$ |
9216.5-e4 |
9216.5-e |
$6$ |
$8$ |
\(\Q(\sqrt{-7}) \) |
$2$ |
$[0, 1]$ |
9216.5 |
\( 2^{10} \cdot 3^{2} \) |
\( 2^{26} \cdot 3^{8} \) |
$2.31645$ |
$(a), (-a+1), (3)$ |
0 |
$\Z/2\Z\oplus\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
$2$ |
2Cs |
$1$ |
\( 2^{5} \) |
$1$ |
$1.285289264$ |
1.943174717 |
\( \frac{1556068}{81} \) |
\( \bigl[0\) , \( -a\) , \( 0\) , \( -24 a + 48\) , \( 36 a + 72\bigr] \) |
${y}^2={x}^{3}-a{x}^{2}+\left(-24a+48\right){x}+36a+72$ |
9216.5-e5 |
9216.5-e |
$6$ |
$8$ |
\(\Q(\sqrt{-7}) \) |
$2$ |
$[0, 1]$ |
9216.5 |
\( 2^{10} \cdot 3^{2} \) |
\( 2^{26} \cdot 3^{2} \) |
$2.31645$ |
$(a), (-a+1), (3)$ |
0 |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
$2$ |
2B |
$1$ |
\( 2^{3} \) |
$1$ |
$1.285289264$ |
1.943174717 |
\( \frac{28756228}{3} \) |
\( \bigl[0\) , \( -a\) , \( 0\) , \( -64 a + 128\) , \( -220 a - 440\bigr] \) |
${y}^2={x}^{3}-a{x}^{2}+\left(-64a+128\right){x}-220a-440$ |
9216.5-e6 |
9216.5-e |
$6$ |
$8$ |
\(\Q(\sqrt{-7}) \) |
$2$ |
$[0, 1]$ |
9216.5 |
\( 2^{10} \cdot 3^{2} \) |
\( 2^{28} \cdot 3^{4} \) |
$2.31645$ |
$(a), (-a+1), (3)$ |
0 |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
$2$ |
2B |
$1$ |
\( 2^{4} \) |
$1$ |
$0.642644632$ |
1.943174717 |
\( \frac{3065617154}{9} \) |
\( \bigl[0\) , \( -a\) , \( 0\) , \( -384 a + 768\) , \( 2772 a + 5544\bigr] \) |
${y}^2={x}^{3}-a{x}^{2}+\left(-384a+768\right){x}+2772a+5544$ |
9216.5-f1 |
9216.5-f |
$4$ |
$4$ |
\(\Q(\sqrt{-7}) \) |
$2$ |
$[0, 1]$ |
9216.5 |
\( 2^{10} \cdot 3^{2} \) |
\( 2^{20} \cdot 3^{2} \) |
$2.31645$ |
$(a), (-a+1), (3)$ |
$1$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
$2$ |
2B |
$1$ |
\( 2^{3} \) |
$0.438567815$ |
$2.713241112$ |
3.598041044 |
\( -\frac{276500}{3} a - \frac{53000}{3} \) |
\( \bigl[0\) , \( -a\) , \( 0\) , \( 12 a - 4\) , \( -12 a - 8\bigr] \) |
${y}^2={x}^{3}-a{x}^{2}+\left(12a-4\right){x}-12a-8$ |
9216.5-f2 |
9216.5-f |
$4$ |
$4$ |
\(\Q(\sqrt{-7}) \) |
$2$ |
$[0, 1]$ |
9216.5 |
\( 2^{10} \cdot 3^{2} \) |
\( 2^{20} \cdot 3^{2} \) |
$2.31645$ |
$(a), (-a+1), (3)$ |
$1$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
$2$ |
2B |
$1$ |
\( 2 \) |
$1.754271260$ |
$2.713241112$ |
3.598041044 |
\( \frac{276500}{3} a - \frac{329500}{3} \) |
\( \bigl[0\) , \( a\) , \( 0\) , \( -3 a - 14\) , \( 2 a + 20\bigr] \) |
${y}^2={x}^{3}+a{x}^{2}+\left(-3a-14\right){x}+2a+20$ |
9216.5-f3 |
9216.5-f |
$4$ |
$4$ |
\(\Q(\sqrt{-7}) \) |
$2$ |
$[0, 1]$ |
9216.5 |
\( 2^{10} \cdot 3^{2} \) |
\( 2^{22} \cdot 3^{4} \) |
$2.31645$ |
$(a), (-a+1), (3)$ |
$1$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
$2$ |
2Cs |
$1$ |
\( 2^{4} \) |
$0.877135630$ |
$2.713241112$ |
3.598041044 |
\( \frac{2000}{9} \) |
\( \bigl[0\) , \( a - 1\) , \( 0\) , \( -2 a + 3\) , \( -3 a + 5\bigr] \) |
${y}^2={x}^{3}+\left(a-1\right){x}^{2}+\left(-2a+3\right){x}-3a+5$ |
9216.5-f4 |
9216.5-f |
$4$ |
$4$ |
\(\Q(\sqrt{-7}) \) |
$2$ |
$[0, 1]$ |
9216.5 |
\( 2^{10} \cdot 3^{2} \) |
\( 2^{26} \cdot 3^{8} \) |
$2.31645$ |
$(a), (-a+1), (3)$ |
$1$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
$2$ |
2B |
$1$ |
\( 2^{4} \) |
$0.438567815$ |
$1.356620556$ |
3.598041044 |
\( \frac{665500}{81} \) |
\( \bigl[0\) , \( a - 1\) , \( 0\) , \( 18 a - 37\) , \( -63 a + 61\bigr] \) |
${y}^2={x}^{3}+\left(a-1\right){x}^{2}+\left(18a-37\right){x}-63a+61$ |
9216.5-g1 |
9216.5-g |
$2$ |
$2$ |
\(\Q(\sqrt{-7}) \) |
$2$ |
$[0, 1]$ |
9216.5 |
\( 2^{10} \cdot 3^{2} \) |
\( 2^{14} \cdot 3^{2} \) |
$2.31645$ |
$(a), (-a+1), (3)$ |
0 |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
$2$ |
2B |
$1$ |
\( 2 \) |
$1$ |
$4.811886447$ |
1.818722125 |
\( \frac{16384}{3} \) |
\( \bigl[0\) , \( a - 1\) , \( 0\) , \( a - 3\) , \( -1\bigr] \) |
${y}^2={x}^{3}+\left(a-1\right){x}^{2}+\left(a-3\right){x}-1$ |
9216.5-g2 |
9216.5-g |
$2$ |
$2$ |
\(\Q(\sqrt{-7}) \) |
$2$ |
$[0, 1]$ |
9216.5 |
\( 2^{10} \cdot 3^{2} \) |
\( 2^{22} \cdot 3^{4} \) |
$2.31645$ |
$(a), (-a+1), (3)$ |
0 |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
$2$ |
2B |
$1$ |
\( 2^{2} \) |
$1$ |
$2.405943223$ |
1.818722125 |
\( \frac{109744}{9} \) |
\( \bigl[0\) , \( a - 1\) , \( 0\) , \( 6 a - 13\) , \( -15 a + 13\bigr] \) |
${y}^2={x}^{3}+\left(a-1\right){x}^{2}+\left(6a-13\right){x}-15a+13$ |
9216.5-h1 |
9216.5-h |
$4$ |
$4$ |
\(\Q(\sqrt{-7}) \) |
$2$ |
$[0, 1]$ |
9216.5 |
\( 2^{10} \cdot 3^{2} \) |
\( 2^{23} \cdot 3^{2} \) |
$2.31645$ |
$(a), (-a+1), (3)$ |
$1$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2$ |
2B |
$1$ |
\( 2^{2} \) |
$0.880101430$ |
$2.676576147$ |
3.561420886 |
\( -\frac{27272}{3} a - 4712 \) |
\( \bigl[0\) , \( -1\) , \( 0\) , \( -7 a + 9\) , \( 3 a - 17\bigr] \) |
${y}^2={x}^{3}-{x}^{2}+\left(-7a+9\right){x}+3a-17$ |
9216.5-h2 |
9216.5-h |
$4$ |
$4$ |
\(\Q(\sqrt{-7}) \) |
$2$ |
$[0, 1]$ |
9216.5 |
\( 2^{10} \cdot 3^{2} \) |
\( 2^{26} \cdot 3^{8} \) |
$2.31645$ |
$(a), (-a+1), (3)$ |
$1$ |
$\Z/4\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2$ |
2B |
$1$ |
\( 2^{5} \) |
$0.880101430$ |
$1.338288073$ |
3.561420886 |
\( \frac{188902}{27} a - \frac{424036}{81} \) |
\( \bigl[0\) , \( a + 1\) , \( 0\) , \( -2 a - 37\) , \( -31 a - 93\bigr] \) |
${y}^2={x}^{3}+\left(a+1\right){x}^{2}+\left(-2a-37\right){x}-31a-93$ |
9216.5-h3 |
9216.5-h |
$4$ |
$4$ |
\(\Q(\sqrt{-7}) \) |
$2$ |
$[0, 1]$ |
9216.5 |
\( 2^{10} \cdot 3^{2} \) |
\( 2^{22} \cdot 3^{4} \) |
$2.31645$ |
$(a), (-a+1), (3)$ |
$1$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2$ |
2Cs |
$1$ |
\( 2^{5} \) |
$0.440050715$ |
$2.676576147$ |
3.561420886 |
\( -\frac{1484}{9} a - \frac{3320}{9} \) |
\( \bigl[0\) , \( a + 1\) , \( 0\) , \( -2 a + 3\) , \( a - 5\bigr] \) |
${y}^2={x}^{3}+\left(a+1\right){x}^{2}+\left(-2a+3\right){x}+a-5$ |
9216.5-h4 |
9216.5-h |
$4$ |
$4$ |
\(\Q(\sqrt{-7}) \) |
$2$ |
$[0, 1]$ |
9216.5 |
\( 2^{10} \cdot 3^{2} \) |
\( 2^{17} \cdot 3^{2} \) |
$2.31645$ |
$(a), (-a+1), (3)$ |
$1$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2$ |
2B |
$1$ |
\( 2^{2} \) |
$0.880101430$ |
$2.676576147$ |
3.561420886 |
\( \frac{1188866}{3} a + 802556 \) |
\( \bigl[0\) , \( 1\) , \( 0\) , \( 4 a + 20\) , \( 30 a - 22\bigr] \) |
${y}^2={x}^{3}+{x}^{2}+\left(4a+20\right){x}+30a-22$ |
9216.5-i1 |
9216.5-i |
$4$ |
$4$ |
\(\Q(\sqrt{-7}) \) |
$2$ |
$[0, 1]$ |
9216.5 |
\( 2^{10} \cdot 3^{2} \) |
\( 2^{30} \cdot 3^{4} \) |
$2.31645$ |
$(a), (-a+1), (3)$ |
0 |
$\Z/2\Z\oplus\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2$ |
2Cs |
$1$ |
\( 2^{5} \) |
$1$ |
$1.688254472$ |
2.552400847 |
\( \frac{1771}{36} a + \frac{51079}{36} \) |
\( \bigl[0\) , \( -a - 1\) , \( 0\) , \( -10 a + 11\) , \( 11 a - 11\bigr] \) |
${y}^2={x}^{3}+\left(-a-1\right){x}^{2}+\left(-10a+11\right){x}+11a-11$ |
9216.5-i2 |
9216.5-i |
$4$ |
$4$ |
\(\Q(\sqrt{-7}) \) |
$2$ |
$[0, 1]$ |
9216.5 |
\( 2^{10} \cdot 3^{2} \) |
\( 2^{33} \cdot 3^{2} \) |
$2.31645$ |
$(a), (-a+1), (3)$ |
0 |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2$ |
2B |
$1$ |
\( 2^{3} \) |
$1$ |
$1.688254472$ |
2.552400847 |
\( -\frac{3191}{48} a + \frac{33423}{16} \) |
\( \bigl[0\) , \( -1\) , \( 0\) , \( -3 a - 15\) , \( 3 a + 15\bigr] \) |
${y}^2={x}^{3}-{x}^{2}+\left(-3a-15\right){x}+3a+15$ |
9216.5-i3 |
9216.5-i |
$4$ |
$4$ |
\(\Q(\sqrt{-7}) \) |
$2$ |
$[0, 1]$ |
9216.5 |
\( 2^{10} \cdot 3^{2} \) |
\( 2^{30} \cdot 3^{8} \) |
$2.31645$ |
$(a), (-a+1), (3)$ |
0 |
$\Z/4\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2$ |
2B |
$1$ |
\( 2^{6} \) |
$1$ |
$0.844127236$ |
2.552400847 |
\( -\frac{8978189}{54} a + \frac{20441305}{162} \) |
\( \bigl[0\) , \( -a - 1\) , \( 0\) , \( -130 a + 91\) , \( 419 a - 1051\bigr] \) |
${y}^2={x}^{3}+\left(-a-1\right){x}^{2}+\left(-130a+91\right){x}+419a-1051$ |
9216.5-i4 |
9216.5-i |
$4$ |
$4$ |
\(\Q(\sqrt{-7}) \) |
$2$ |
$[0, 1]$ |
9216.5 |
\( 2^{10} \cdot 3^{2} \) |
\( 2^{27} \cdot 3^{2} \) |
$2.31645$ |
$(a), (-a+1), (3)$ |
0 |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2$ |
2B |
$1$ |
\( 2^{3} \) |
$1$ |
$1.688254472$ |
2.552400847 |
\( \frac{1410889}{6} a - \frac{138417}{2} \) |
\( \bigl[0\) , \( 1\) , \( 0\) , \( -23 a - 23\) , \( 73 a + 9\bigr] \) |
${y}^2={x}^{3}+{x}^{2}+\left(-23a-23\right){x}+73a+9$ |
*The rank, regulator and analytic order of Ш are
not known for all curves in the database; curves for which these are
unknown will not appear in searches specifying one of these
quantities.