Learn more

The results below are complete, since the LMFDB contains all elliptic curves with conductor norm at most 50000 over imaginary quadratic fields with absolute discriminant 7

Note: The completeness Only modular elliptic curves are included

Refine search


Results (10 matches)

  displayed columns for results
Label Class Base field Conductor norm Rank Torsion CM Sato-Tate Regulator Period Leading coeff j-invariant Weierstrass coefficients Weierstrass equation
9072.5-a1 9072.5-a \(\Q(\sqrt{-7}) \) \( 2^{4} \cdot 3^{4} \cdot 7 \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $0.451069876$ $0.731790536$ 1.996188624 \( \frac{48284377}{189} a - \frac{108521789}{567} \) \( \bigl[a + 1\) , \( 1\) , \( a + 1\) , \( 138 a - 238\) , \( -1076 a + 908\bigr] \) ${y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^{3}+{x}^{2}+\left(138a-238\right){x}-1076a+908$
9072.5-a2 9072.5-a \(\Q(\sqrt{-7}) \) \( 2^{4} \cdot 3^{4} \cdot 7 \) $1$ $\Z/4\Z$ $\mathrm{SU}(2)$ $1.804279506$ $1.463581072$ 1.996188624 \( -\frac{219127}{7} a - \frac{566221}{21} \) \( \bigl[a + 1\) , \( 1\) , \( a + 1\) , \( -33 a + 35\) , \( 8 a - 104\bigr] \) ${y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^{3}+{x}^{2}+\left(-33a+35\right){x}+8a-104$
9072.5-a3 9072.5-a \(\Q(\sqrt{-7}) \) \( 2^{4} \cdot 3^{4} \cdot 7 \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $0.902139753$ $1.463581072$ 1.996188624 \( -\frac{4009}{21} a + \frac{2191}{9} \) \( \bigl[a + 1\) , \( 1\) , \( a + 1\) , \( 3 a - 13\) , \( -32 a + 8\bigr] \) ${y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^{3}+{x}^{2}+\left(3a-13\right){x}-32a+8$
9072.5-a4 9072.5-a \(\Q(\sqrt{-7}) \) \( 2^{4} \cdot 3^{4} \cdot 7 \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $0.451069876$ $1.463581072$ 1.996188624 \( \frac{166231}{49} a + \frac{660025}{147} \) \( \bigl[a + 1\) , \( 1\) , \( a + 1\) , \( -24 a + 17\) , \( -28 a + 80\bigr] \) ${y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^{3}+{x}^{2}+\left(-24a+17\right){x}-28a+80$
9072.5-b1 9072.5-b \(\Q(\sqrt{-7}) \) \( 2^{4} \cdot 3^{4} \cdot 7 \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $0.934962333$ 2.827060365 \( -\frac{863944673}{63} a - \frac{1616364293}{63} \) \( \bigl[a + 1\) , \( 1\) , \( 0\) , \( -27 a - 270\) , \( 187 a + 1639\bigr] \) ${y}^2+\left(a+1\right){x}{y}={x}^{3}+{x}^{2}+\left(-27a-270\right){x}+187a+1639$
9072.5-b2 9072.5-b \(\Q(\sqrt{-7}) \) \( 2^{4} \cdot 3^{4} \cdot 7 \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $0.467481166$ 2.827060365 \( \frac{70011793}{7203} a - \frac{221078161}{7203} \) \( \bigl[a + 1\) , \( 1\) , \( 0\) , \( 117 a - 423\) , \( -1350 a + 3078\bigr] \) ${y}^2+\left(a+1\right){x}{y}={x}^{3}+{x}^{2}+\left(117a-423\right){x}-1350a+3078$
9072.5-b3 9072.5-b \(\Q(\sqrt{-7}) \) \( 2^{4} \cdot 3^{4} \cdot 7 \) 0 $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $0.934962333$ 2.827060365 \( \frac{172799}{441} a - \frac{2545}{9} \) \( \bigl[a + 1\) , \( 1\) , \( 0\) , \( -18 a - 18\) , \( -135 a + 81\bigr] \) ${y}^2+\left(a+1\right){x}{y}={x}^{3}+{x}^{2}+\left(-18a-18\right){x}-135a+81$
9072.5-b4 9072.5-b \(\Q(\sqrt{-7}) \) \( 2^{4} \cdot 3^{4} \cdot 7 \) 0 $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $0.934962333$ 2.827060365 \( -\frac{839201}{189} a + \frac{2555873}{567} \) \( \bigl[a + 1\) , \( 1\) , \( 0\) , \( -54 a + 30\) , \( -151 a + 249\bigr] \) ${y}^2+\left(a+1\right){x}{y}={x}^{3}+{x}^{2}+\left(-54a+30\right){x}-151a+249$
9072.5-b5 9072.5-b \(\Q(\sqrt{-7}) \) \( 2^{4} \cdot 3^{4} \cdot 7 \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $0.467481166$ 2.827060365 \( \frac{78717967}{15309} a - \frac{9092939}{45927} \) \( \bigl[a + 1\) , \( 1\) , \( 0\) , \( -189 a + 255\) , \( -304 a - 1596\bigr] \) ${y}^2+\left(a+1\right){x}{y}={x}^{3}+{x}^{2}+\left(-189a+255\right){x}-304a-1596$
9072.5-b6 9072.5-b \(\Q(\sqrt{-7}) \) \( 2^{4} \cdot 3^{4} \cdot 7 \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $0.934962333$ 2.827060365 \( -\frac{13784383}{21} a + \frac{8018911}{21} \) \( \bigl[a + 1\) , \( 1\) , \( 0\) , \( -90 a + 174\) , \( -295 a - 575\bigr] \) ${y}^2+\left(a+1\right){x}{y}={x}^{3}+{x}^{2}+\left(-90a+174\right){x}-295a-575$
  displayed columns for results

  *The rank, regulator and analytic order of Ш are not known for all curves in the database; curves for which these are unknown will not appear in searches specifying one of these quantities.