The results below are complete, since the LMFDB contains all elliptic curves with conductor norm at most 50000 over imaginary quadratic fields with absolute discriminant 7
Note: The completeness Only modular elliptic curves are included
| Label |
Class |
Class size |
Class degree |
Base field |
Field degree |
Field signature |
Conductor |
Conductor norm |
Discriminant norm |
Root analytic conductor |
Bad primes |
Rank |
Torsion |
CM |
CM |
Sato-Tate |
$\Q$-curve |
Base change |
Semistable |
Potentially good |
Nonmax $\ell$ |
mod-$\ell$ images |
$Ш_{\textrm{an}}$ |
Tamagawa |
Regulator |
Period |
Leading coeff |
j-invariant |
Weierstrass coefficients |
Weierstrass equation |
| 9072.5-a1 |
9072.5-a |
$4$ |
$4$ |
\(\Q(\sqrt{-7}) \) |
$2$ |
$[0, 1]$ |
9072.5 |
\( 2^{4} \cdot 3^{4} \cdot 7 \) |
\( 2^{10} \cdot 3^{20} \cdot 7 \) |
$2.30735$ |
$(-a+1), (-2a+1), (3)$ |
$1$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2$ |
2B |
$1$ |
\( 2^{4} \) |
$0.451069876$ |
$0.731790536$ |
1.996188624 |
\( \frac{48284377}{189} a - \frac{108521789}{567} \) |
\( \bigl[a + 1\) , \( 1\) , \( a + 1\) , \( 138 a - 238\) , \( -1076 a + 908\bigr] \) |
${y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^{3}+{x}^{2}+\left(138a-238\right){x}-1076a+908$ |
| 9072.5-a2 |
9072.5-a |
$4$ |
$4$ |
\(\Q(\sqrt{-7}) \) |
$2$ |
$[0, 1]$ |
9072.5 |
\( 2^{4} \cdot 3^{4} \cdot 7 \) |
\( 2^{10} \cdot 3^{14} \cdot 7 \) |
$2.30735$ |
$(-a+1), (-2a+1), (3)$ |
$1$ |
$\Z/4\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2$ |
2B |
$1$ |
\( 2^{3} \) |
$1.804279506$ |
$1.463581072$ |
1.996188624 |
\( -\frac{219127}{7} a - \frac{566221}{21} \) |
\( \bigl[a + 1\) , \( 1\) , \( a + 1\) , \( -33 a + 35\) , \( 8 a - 104\bigr] \) |
${y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^{3}+{x}^{2}+\left(-33a+35\right){x}+8a-104$ |
| 9072.5-a3 |
9072.5-a |
$4$ |
$4$ |
\(\Q(\sqrt{-7}) \) |
$2$ |
$[0, 1]$ |
9072.5 |
\( 2^{4} \cdot 3^{4} \cdot 7 \) |
\( 2^{8} \cdot 3^{16} \cdot 7^{2} \) |
$2.30735$ |
$(-a+1), (-2a+1), (3)$ |
$1$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2$ |
2Cs |
$1$ |
\( 2^{4} \) |
$0.902139753$ |
$1.463581072$ |
1.996188624 |
\( -\frac{4009}{21} a + \frac{2191}{9} \) |
\( \bigl[a + 1\) , \( 1\) , \( a + 1\) , \( 3 a - 13\) , \( -32 a + 8\bigr] \) |
${y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^{3}+{x}^{2}+\left(3a-13\right){x}-32a+8$ |
| 9072.5-a4 |
9072.5-a |
$4$ |
$4$ |
\(\Q(\sqrt{-7}) \) |
$2$ |
$[0, 1]$ |
9072.5 |
\( 2^{4} \cdot 3^{4} \cdot 7 \) |
\( 2^{4} \cdot 3^{14} \cdot 7^{4} \) |
$2.30735$ |
$(-a+1), (-2a+1), (3)$ |
$1$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2$ |
2B |
$1$ |
\( 2^{3} \) |
$0.451069876$ |
$1.463581072$ |
1.996188624 |
\( \frac{166231}{49} a + \frac{660025}{147} \) |
\( \bigl[a + 1\) , \( 1\) , \( a + 1\) , \( -24 a + 17\) , \( -28 a + 80\bigr] \) |
${y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^{3}+{x}^{2}+\left(-24a+17\right){x}-28a+80$ |
| 9072.5-b1 |
9072.5-b |
$6$ |
$8$ |
\(\Q(\sqrt{-7}) \) |
$2$ |
$[0, 1]$ |
9072.5 |
\( 2^{4} \cdot 3^{4} \cdot 7 \) |
\( 2^{4} \cdot 3^{16} \cdot 7 \) |
$2.30735$ |
$(-a+1), (-2a+1), (3)$ |
0 |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2$ |
2B |
$4$ |
\( 2^{2} \) |
$1$ |
$0.934962333$ |
2.827060365 |
\( -\frac{863944673}{63} a - \frac{1616364293}{63} \) |
\( \bigl[a + 1\) , \( 1\) , \( 0\) , \( -27 a - 270\) , \( 187 a + 1639\bigr] \) |
${y}^2+\left(a+1\right){x}{y}={x}^{3}+{x}^{2}+\left(-27a-270\right){x}+187a+1639$ |
| 9072.5-b2 |
9072.5-b |
$6$ |
$8$ |
\(\Q(\sqrt{-7}) \) |
$2$ |
$[0, 1]$ |
9072.5 |
\( 2^{4} \cdot 3^{4} \cdot 7 \) |
\( 2^{11} \cdot 3^{14} \cdot 7^{8} \) |
$2.30735$ |
$(-a+1), (-2a+1), (3)$ |
0 |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2$ |
2B |
$1$ |
\( 2^{5} \) |
$1$ |
$0.467481166$ |
2.827060365 |
\( \frac{70011793}{7203} a - \frac{221078161}{7203} \) |
\( \bigl[a + 1\) , \( 1\) , \( 0\) , \( 117 a - 423\) , \( -1350 a + 3078\bigr] \) |
${y}^2+\left(a+1\right){x}{y}={x}^{3}+{x}^{2}+\left(117a-423\right){x}-1350a+3078$ |
| 9072.5-b3 |
9072.5-b |
$6$ |
$8$ |
\(\Q(\sqrt{-7}) \) |
$2$ |
$[0, 1]$ |
9072.5 |
\( 2^{4} \cdot 3^{4} \cdot 7 \) |
\( 2^{10} \cdot 3^{16} \cdot 7^{4} \) |
$2.30735$ |
$(-a+1), (-2a+1), (3)$ |
0 |
$\Z/2\Z\oplus\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2$ |
2Cs |
$1$ |
\( 2^{6} \) |
$1$ |
$0.934962333$ |
2.827060365 |
\( \frac{172799}{441} a - \frac{2545}{9} \) |
\( \bigl[a + 1\) , \( 1\) , \( 0\) , \( -18 a - 18\) , \( -135 a + 81\bigr] \) |
${y}^2+\left(a+1\right){x}{y}={x}^{3}+{x}^{2}+\left(-18a-18\right){x}-135a+81$ |
| 9072.5-b4 |
9072.5-b |
$6$ |
$8$ |
\(\Q(\sqrt{-7}) \) |
$2$ |
$[0, 1]$ |
9072.5 |
\( 2^{4} \cdot 3^{4} \cdot 7 \) |
\( 2^{8} \cdot 3^{20} \cdot 7^{2} \) |
$2.30735$ |
$(-a+1), (-2a+1), (3)$ |
0 |
$\Z/2\Z\oplus\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2$ |
2Cs |
$4$ |
\( 2^{4} \) |
$1$ |
$0.934962333$ |
2.827060365 |
\( -\frac{839201}{189} a + \frac{2555873}{567} \) |
\( \bigl[a + 1\) , \( 1\) , \( 0\) , \( -54 a + 30\) , \( -151 a + 249\bigr] \) |
${y}^2+\left(a+1\right){x}{y}={x}^{3}+{x}^{2}+\left(-54a+30\right){x}-151a+249$ |
| 9072.5-b5 |
9072.5-b |
$6$ |
$8$ |
\(\Q(\sqrt{-7}) \) |
$2$ |
$[0, 1]$ |
9072.5 |
\( 2^{4} \cdot 3^{4} \cdot 7 \) |
\( 2^{10} \cdot 3^{28} \cdot 7 \) |
$2.30735$ |
$(-a+1), (-2a+1), (3)$ |
0 |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2$ |
2B |
$4$ |
\( 2^{3} \) |
$1$ |
$0.467481166$ |
2.827060365 |
\( \frac{78717967}{15309} a - \frac{9092939}{45927} \) |
\( \bigl[a + 1\) , \( 1\) , \( 0\) , \( -189 a + 255\) , \( -304 a - 1596\bigr] \) |
${y}^2+\left(a+1\right){x}{y}={x}^{3}+{x}^{2}+\left(-189a+255\right){x}-304a-1596$ |
| 9072.5-b6 |
9072.5-b |
$6$ |
$8$ |
\(\Q(\sqrt{-7}) \) |
$2$ |
$[0, 1]$ |
9072.5 |
\( 2^{4} \cdot 3^{4} \cdot 7 \) |
\( 2^{11} \cdot 3^{14} \cdot 7^{2} \) |
$2.30735$ |
$(-a+1), (-2a+1), (3)$ |
0 |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2$ |
2B |
$1$ |
\( 2^{4} \) |
$1$ |
$0.934962333$ |
2.827060365 |
\( -\frac{13784383}{21} a + \frac{8018911}{21} \) |
\( \bigl[a + 1\) , \( 1\) , \( 0\) , \( -90 a + 174\) , \( -295 a - 575\bigr] \) |
${y}^2+\left(a+1\right){x}{y}={x}^{3}+{x}^{2}+\left(-90a+174\right){x}-295a-575$ |
*The rank, regulator and analytic order of Ш are
not known for all curves in the database; curves for which these are
unknown will not appear in searches specifying one of these
quantities.