Learn more

Refine search


Results (18 matches)

  displayed columns for results
Label Class Base field Conductor norm Rank Torsion CM Sato-Tate Regulator Period Leading coeff j-invariant Weierstrass coefficients Weierstrass equation
4356.6-a1 4356.6-a \(\Q(\sqrt{-7}) \) \( 2^{2} \cdot 3^{2} \cdot 11^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $0.171079744$ $1.585085287$ 1.639918221 \( \frac{1375753}{6336} a - \frac{1038611}{6336} \) \( \bigl[1\) , \( 0\) , \( 1\) , \( -8 a + 4\) , \( 2 a - 34\bigr] \) ${y}^2+{x}{y}+{y}={x}^{3}+\left(-8a+4\right){x}+2a-34$
4356.6-a2 4356.6-a \(\Q(\sqrt{-7}) \) \( 2^{2} \cdot 3^{2} \cdot 11^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $0.342159489$ $1.585085287$ 1.639918221 \( -\frac{17031617}{2904} a + \frac{21786113}{2904} \) \( \bigl[1\) , \( a\) , \( a + 1\) , \( -12 a + 27\) , \( -17 a - 24\bigr] \) ${y}^2+{x}{y}+\left(a+1\right){y}={x}^{3}+a{x}^{2}+\left(-12a+27\right){x}-17a-24$
4356.6-b1 4356.6-b \(\Q(\sqrt{-7}) \) \( 2^{2} \cdot 3^{2} \cdot 11^{2} \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $0.416494274$ $1.281706661$ 3.228261005 \( \frac{4913}{1296} \) \( \bigl[1\) , \( a - 1\) , \( 0\) , \( -3 a + 2\) , \( 45 a + 2\bigr] \) ${y}^2+{x}{y}={x}^{3}+\left(a-1\right){x}^{2}+\left(-3a+2\right){x}+45a+2$
4356.6-b2 4356.6-b \(\Q(\sqrt{-7}) \) \( 2^{2} \cdot 3^{2} \cdot 11^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $1.665977099$ $1.281706661$ 3.228261005 \( -\frac{43993943}{196608} a + \frac{140725583}{65536} \) \( \bigl[1\) , \( -a - 1\) , \( 0\) , \( 12 a + 20\) , \( 6 a - 20\bigr] \) ${y}^2+{x}{y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(12a+20\right){x}+6a-20$
4356.6-b3 4356.6-b \(\Q(\sqrt{-7}) \) \( 2^{2} \cdot 3^{2} \cdot 11^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $0.104123568$ $1.281706661$ 3.228261005 \( \frac{43993943}{196608} a + \frac{189091403}{98304} \) \( \bigl[1\) , \( -a - 1\) , \( 0\) , \( -30\) , \( 18 a + 30\bigr] \) ${y}^2+{x}{y}={x}^{3}+\left(-a-1\right){x}^{2}-30{x}+18a+30$
4356.6-b4 4356.6-b \(\Q(\sqrt{-7}) \) \( 2^{2} \cdot 3^{2} \cdot 11^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $0.832988549$ $0.640853330$ 3.228261005 \( \frac{838561807}{26244} \) \( \bigl[1\) , \( a - 1\) , \( 0\) , \( 157 a - 138\) , \( 805 a - 58\bigr] \) ${y}^2+{x}{y}={x}^{3}+\left(a-1\right){x}^{2}+\left(157a-138\right){x}+805a-58$
4356.6-b5 4356.6-b \(\Q(\sqrt{-7}) \) \( 2^{2} \cdot 3^{2} \cdot 11^{2} \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $0.208247137$ $1.281706661$ 3.228261005 \( -\frac{56620795}{2304} a + \frac{85821697}{1152} \) \( \bigl[1\) , \( -a\) , \( 1\) , \( -46 a + 9\) , \( 135 a - 178\bigr] \) ${y}^2+{x}{y}+{y}={x}^{3}-a{x}^{2}+\left(-46a+9\right){x}+135a-178$
4356.6-b6 4356.6-b \(\Q(\sqrt{-7}) \) \( 2^{2} \cdot 3^{2} \cdot 11^{2} \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $0.832988549$ $1.281706661$ 3.228261005 \( \frac{56620795}{2304} a + \frac{115022599}{2304} \) \( \bigl[1\) , \( a + 1\) , \( 0\) , \( -33 a + 60\) , \( 45 a + 198\bigr] \) ${y}^2+{x}{y}={x}^{3}+\left(a+1\right){x}^{2}+\left(-33a+60\right){x}+45a+198$
4356.6-b7 4356.6-b \(\Q(\sqrt{-7}) \) \( 2^{2} \cdot 3^{2} \cdot 11^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $0.416494274$ $0.640853330$ 3.228261005 \( -\frac{145011769343}{48} a + \frac{101553555457}{24} \) \( \bigl[1\) , \( -a\) , \( 1\) , \( -736 a + 159\) , \( 8283 a - 10030\bigr] \) ${y}^2+{x}{y}+{y}={x}^{3}-a{x}^{2}+\left(-736a+159\right){x}+8283a-10030$
4356.6-b8 4356.6-b \(\Q(\sqrt{-7}) \) \( 2^{2} \cdot 3^{2} \cdot 11^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $1.665977099$ $0.640853330$ 3.228261005 \( \frac{145011769343}{48} a + \frac{19365113857}{16} \) \( \bigl[1\) , \( a + 1\) , \( 0\) , \( -543 a + 960\) , \( 3123 a + 10482\bigr] \) ${y}^2+{x}{y}={x}^{3}+\left(a+1\right){x}^{2}+\left(-543a+960\right){x}+3123a+10482$
4356.6-c1 4356.6-c \(\Q(\sqrt{-7}) \) \( 2^{2} \cdot 3^{2} \cdot 11^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $0.737347964$ 2.229530679 \( -\frac{11528611}{576} a - \frac{43599055}{288} \) \( \bigl[1\) , \( -a - 1\) , \( 1\) , \( 128 a - 203\) , \( -919 a + 895\bigr] \) ${y}^2+{x}{y}+{y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(128a-203\right){x}-919a+895$
4356.6-c2 4356.6-c \(\Q(\sqrt{-7}) \) \( 2^{2} \cdot 3^{2} \cdot 11^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $0.737347964$ 2.229530679 \( -\frac{45799}{1296} a + \frac{731363}{1296} \) \( \bigl[1\) , \( -a\) , \( 0\) , \( -61\) , \( -180 a + 113\bigr] \) ${y}^2+{x}{y}={x}^{3}-a{x}^{2}-61{x}-180a+113$
4356.6-d1 4356.6-d \(\Q(\sqrt{-7}) \) \( 2^{2} \cdot 3^{2} \cdot 11^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $0.505633125$ 2.293336294 \( -\frac{2553161206303}{1486848} a + \frac{335587165399}{495616} \) \( \bigl[1\) , \( 1\) , \( a + 1\) , \( -271 a - 454\) , \( -3958 a - 3029\bigr] \) ${y}^2+{x}{y}+\left(a+1\right){y}={x}^{3}+{x}^{2}+\left(-271a-454\right){x}-3958a-3029$
4356.6-d2 4356.6-d \(\Q(\sqrt{-7}) \) \( 2^{2} \cdot 3^{2} \cdot 11^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $0.252816562$ 2.293336294 \( \frac{34147229879407}{61735357728} a + \frac{275344585935545}{277809109776} \) \( \bigl[1\) , \( -a + 1\) , \( 1\) , \( -257 a + 733\) , \( -4351 a + 2383\bigr] \) ${y}^2+{x}{y}+{y}={x}^{3}+\left(-a+1\right){x}^{2}+\left(-257a+733\right){x}-4351a+2383$
4356.6-d3 4356.6-d \(\Q(\sqrt{-7}) \) \( 2^{2} \cdot 3^{2} \cdot 11^{2} \) 0 $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $0.505633125$ 2.293336294 \( -\frac{102397297499}{134931456} a + \frac{150774304457}{67465728} \) \( \bigl[1\) , \( -a + 1\) , \( 1\) , \( 103 a - 187\) , \( -463 a + 191\bigr] \) ${y}^2+{x}{y}+{y}={x}^{3}+\left(-a+1\right){x}^{2}+\left(103a-187\right){x}-463a+191$
4356.6-d4 4356.6-d \(\Q(\sqrt{-7}) \) \( 2^{2} \cdot 3^{2} \cdot 11^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $0.505633125$ 2.293336294 \( \frac{11336952210079}{380633088} a + \frac{71100053329}{63438848} \) \( \bigl[1\) , \( 0\) , \( a\) , \( 261 a - 12\) , \( -592 a - 2240\bigr] \) ${y}^2+{x}{y}+a{y}={x}^{3}+\left(261a-12\right){x}-592a-2240$
4356.6-e1 4356.6-e \(\Q(\sqrt{-7}) \) \( 2^{2} \cdot 3^{2} \cdot 11^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $0.042930064$ $1.378554638$ 5.636857313 \( -\frac{1217204443}{262144} a + \frac{470888579}{393216} \) \( \bigl[1\) , \( -a\) , \( a\) , \( 2 a + 31\) , \( 46 a - 25\bigr] \) ${y}^2+{x}{y}+a{y}={x}^{3}-a{x}^{2}+\left(2a+31\right){x}+46a-25$
4356.6-e2 4356.6-e \(\Q(\sqrt{-7}) \) \( 2^{2} \cdot 3^{2} \cdot 11^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $0.021465032$ $1.378554638$ 5.636857313 \( \frac{20138209}{49152} a - \frac{111021713}{147456} \) \( \bigl[1\) , \( a - 1\) , \( a + 1\) , \( -7 a + 19\) , \( 43 a + 3\bigr] \) ${y}^2+{x}{y}+\left(a+1\right){y}={x}^{3}+\left(a-1\right){x}^{2}+\left(-7a+19\right){x}+43a+3$
  displayed columns for results

  *The rank, regulator and analytic order of Ш are not known for all curves in the database; curves for which these are unknown will not appear in searches specifying one of these quantities.