Learn more

Refine search


Results (18 matches)

  displayed columns for results
Label Class Base field Conductor norm Rank Torsion CM Sato-Tate Regulator Period Leading coeff j-invariant Weierstrass coefficients Weierstrass equation
39204.6-a1 39204.6-a \(\Q(\sqrt{-7}) \) \( 2^{2} \cdot 3^{4} \cdot 11^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $0.805513358$ $0.459518212$ 2.238445055 \( \frac{20138209}{49152} a - \frac{111021713}{147456} \) \( \bigl[1\) , \( -1\) , \( 0\) , \( -57 a + 180\) , \( -1003 a - 138\bigr] \) ${y}^2+{x}{y}={x}^{3}-{x}^{2}+\left(-57a+180\right){x}-1003a-138$
39204.6-a2 39204.6-a \(\Q(\sqrt{-7}) \) \( 2^{2} \cdot 3^{4} \cdot 11^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $1.611026716$ $0.459518212$ 2.238445055 \( -\frac{1217204443}{262144} a + \frac{470888579}{393216} \) \( \bigl[1\) , \( -1\) , \( 0\) , \( 21 a + 285\) , \( -1553 a + 731\bigr] \) ${y}^2+{x}{y}={x}^{3}-{x}^{2}+\left(21a+285\right){x}-1553a+731$
39204.6-b1 39204.6-b \(\Q(\sqrt{-7}) \) \( 2^{2} \cdot 3^{4} \cdot 11^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $0.245782654$ 2.229530679 \( -\frac{11528611}{576} a - \frac{43599055}{288} \) \( \bigl[1\) , \( -1\) , \( a\) , \( 1144 a - 1818\) , \( 24339 a - 20058\bigr] \) ${y}^2+{x}{y}+a{y}={x}^{3}-{x}^{2}+\left(1144a-1818\right){x}+24339a-20058$
39204.6-b2 39204.6-b \(\Q(\sqrt{-7}) \) \( 2^{2} \cdot 3^{4} \cdot 11^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $0.245782654$ 2.229530679 \( -\frac{45799}{1296} a + \frac{731363}{1296} \) \( \bigl[1\) , \( -1\) , \( a\) , \( -2 a - 543\) , \( 5406 a - 3053\bigr] \) ${y}^2+{x}{y}+a{y}={x}^{3}-{x}^{2}+\left(-2a-543\right){x}+5406a-3053$
39204.6-c1 39204.6-c \(\Q(\sqrt{-7}) \) \( 2^{2} \cdot 3^{4} \cdot 11^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $2.701373009$ $0.084272187$ 6.883507518 \( \frac{34147229879407}{61735357728} a + \frac{275344585935545}{277809109776} \) \( \bigl[1\) , \( -1\) , \( a\) , \( -2309 a + 6603\) , \( 110874 a - 62365\bigr] \) ${y}^2+{x}{y}+a{y}={x}^{3}-{x}^{2}+\left(-2309a+6603\right){x}+110874a-62365$
39204.6-c2 39204.6-c \(\Q(\sqrt{-7}) \) \( 2^{2} \cdot 3^{4} \cdot 11^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $0.675343252$ $0.168544375$ 6.883507518 \( \frac{11336952210079}{380633088} a + \frac{71100053329}{63438848} \) \( \bigl[1\) , \( -1\) , \( a\) , \( 2353 a - 108\) , \( 15977 a + 60494\bigr] \) ${y}^2+{x}{y}+a{y}={x}^{3}-{x}^{2}+\left(2353a-108\right){x}+15977a+60494$
39204.6-c3 39204.6-c \(\Q(\sqrt{-7}) \) \( 2^{2} \cdot 3^{4} \cdot 11^{2} \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $1.350686504$ $0.168544375$ 6.883507518 \( -\frac{102397297499}{134931456} a + \frac{150774304457}{67465728} \) \( \bigl[1\) , \( -1\) , \( a\) , \( 931 a - 1677\) , \( 14178 a - 4981\bigr] \) ${y}^2+{x}{y}+a{y}={x}^{3}-{x}^{2}+\left(931a-1677\right){x}+14178a-4981$
39204.6-c4 39204.6-c \(\Q(\sqrt{-7}) \) \( 2^{2} \cdot 3^{4} \cdot 11^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $2.701373009$ $0.168544375$ 6.883507518 \( -\frac{2553161206303}{1486848} a + \frac{335587165399}{495616} \) \( \bigl[1\) , \( -1\) , \( a\) , \( -2435 a - 4086\) , \( 104411 a + 77706\bigr] \) ${y}^2+{x}{y}+a{y}={x}^{3}-{x}^{2}+\left(-2435a-4086\right){x}+104411a+77706$
39204.6-d1 39204.6-d \(\Q(\sqrt{-7}) \) \( 2^{2} \cdot 3^{4} \cdot 11^{2} \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $1.150277665$ $0.427235553$ 5.943893680 \( \frac{4913}{1296} \) \( \bigl[1\) , \( -1\) , \( a + 1\) , \( -26 a + 22\) , \( -1195 a - 23\bigr] \) ${y}^2+{x}{y}+\left(a+1\right){y}={x}^{3}-{x}^{2}+\left(-26a+22\right){x}-1195a-23$
39204.6-d2 39204.6-d \(\Q(\sqrt{-7}) \) \( 2^{2} \cdot 3^{4} \cdot 11^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $1.150277665$ $0.427235553$ 5.943893680 \( \frac{43993943}{196608} a + \frac{189091403}{98304} \) \( \bigl[1\) , \( -1\) , \( a + 1\) , \( -8 a - 266\) , \( -209 a - 553\bigr] \) ${y}^2+{x}{y}+\left(a+1\right){y}={x}^{3}-{x}^{2}+\left(-8a-266\right){x}-209a-553$
39204.6-d3 39204.6-d \(\Q(\sqrt{-7}) \) \( 2^{2} \cdot 3^{4} \cdot 11^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $0.287569416$ $0.427235553$ 5.943893680 \( -\frac{43993943}{196608} a + \frac{140725583}{65536} \) \( \bigl[1\) , \( -1\) , \( a + 1\) , \( 100 a + 184\) , \( -551 a + 563\bigr] \) ${y}^2+{x}{y}+\left(a+1\right){y}={x}^{3}-{x}^{2}+\left(100a+184\right){x}-551a+563$
39204.6-d4 39204.6-d \(\Q(\sqrt{-7}) \) \( 2^{2} \cdot 3^{4} \cdot 11^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $2.300555330$ $0.213617776$ 5.943893680 \( \frac{838561807}{26244} \) \( \bigl[1\) , \( -1\) , \( a + 1\) , \( 1414 a - 1238\) , \( -22975 a - 23\bigr] \) ${y}^2+{x}{y}+\left(a+1\right){y}={x}^{3}-{x}^{2}+\left(1414a-1238\right){x}-22975a-23$
39204.6-d5 39204.6-d \(\Q(\sqrt{-7}) \) \( 2^{2} \cdot 3^{4} \cdot 11^{2} \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $0.575138832$ $0.427235553$ 5.943893680 \( \frac{56620795}{2304} a + \frac{115022599}{2304} \) \( \bigl[1\) , \( -1\) , \( a + 1\) , \( -308 a + 541\) , \( -1282 a - 4197\bigr] \) ${y}^2+{x}{y}+\left(a+1\right){y}={x}^{3}-{x}^{2}+\left(-308a+541\right){x}-1282a-4197$
39204.6-d6 39204.6-d \(\Q(\sqrt{-7}) \) \( 2^{2} \cdot 3^{4} \cdot 11^{2} \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $2.300555330$ $0.427235553$ 5.943893680 \( -\frac{56620795}{2304} a + \frac{85821697}{1152} \) \( \bigl[1\) , \( -1\) , \( a + 1\) , \( -416 a + 91\) , \( -3320 a + 3969\bigr] \) ${y}^2+{x}{y}+\left(a+1\right){y}={x}^{3}-{x}^{2}+\left(-416a+91\right){x}-3320a+3969$
39204.6-d7 39204.6-d \(\Q(\sqrt{-7}) \) \( 2^{2} \cdot 3^{4} \cdot 11^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $1.150277665$ $0.213617776$ 5.943893680 \( \frac{145011769343}{48} a + \frac{19365113857}{16} \) \( \bigl[1\) , \( -1\) , \( a + 1\) , \( -4898 a + 8641\) , \( -85468 a - 264585\bigr] \) ${y}^2+{x}{y}+\left(a+1\right){y}={x}^{3}-{x}^{2}+\left(-4898a+8641\right){x}-85468a-264585$
39204.6-d8 39204.6-d \(\Q(\sqrt{-7}) \) \( 2^{2} \cdot 3^{4} \cdot 11^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $4.601110661$ $0.213617776$ 5.943893680 \( -\frac{145011769343}{48} a + \frac{101553555457}{24} \) \( \bigl[1\) , \( -1\) , \( a + 1\) , \( -6626 a + 1441\) , \( -218456 a + 257553\bigr] \) ${y}^2+{x}{y}+\left(a+1\right){y}={x}^{3}-{x}^{2}+\left(-6626a+1441\right){x}-218456a+257553$
39204.6-e1 39204.6-e \(\Q(\sqrt{-7}) \) \( 2^{2} \cdot 3^{4} \cdot 11^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $0.528361762$ 4.792847404 \( \frac{1375753}{6336} a - \frac{1038611}{6336} \) \( \bigl[1\) , \( -1\) , \( 1\) , \( -72 a + 40\) , \( -54 a + 911\bigr] \) ${y}^2+{x}{y}+{y}={x}^{3}-{x}^{2}+\left(-72a+40\right){x}-54a+911$
39204.6-e2 39204.6-e \(\Q(\sqrt{-7}) \) \( 2^{2} \cdot 3^{4} \cdot 11^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $0.528361762$ 4.792847404 \( -\frac{17031617}{2904} a + \frac{21786113}{2904} \) \( \bigl[1\) , \( -1\) , \( 1\) , \( -108 a + 253\) , \( 584 a + 867\bigr] \) ${y}^2+{x}{y}+{y}={x}^{3}-{x}^{2}+\left(-108a+253\right){x}+584a+867$
  displayed columns for results

  *The rank, regulator and analytic order of Ш are not known for all curves in the database; curves for which these are unknown will not appear in searches specifying one of these quantities.