Label |
Class |
Class size |
Class degree |
Base field |
Field degree |
Field signature |
Conductor |
Conductor norm |
Discriminant norm |
Root analytic conductor |
Bad primes |
Rank |
Torsion |
CM |
CM |
Sato-Tate |
$\Q$-curve |
Base change |
Semistable |
Potentially good |
Nonmax $\ell$ |
mod-$\ell$ images |
$Ш_{\textrm{an}}$ |
Tamagawa |
Regulator |
Period |
Leading coeff |
j-invariant |
Weierstrass coefficients |
Weierstrass equation |
11664.5-a1 |
11664.5-a |
$1$ |
$1$ |
\(\Q(\sqrt{-7}) \) |
$2$ |
$[0, 1]$ |
11664.5 |
\( 2^{4} \cdot 3^{6} \) |
\( 2^{12} \cdot 3^{6} \) |
$2.45697$ |
$(-a+1), (3)$ |
$2$ |
$\mathsf{trivial}$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
✓ |
$3$ |
3Cn |
$1$ |
\( 2^{2} \) |
$0.055827493$ |
$3.904156338$ |
2.636187434 |
\( -1215 a + 1242 \) |
\( \bigl[0\) , \( 0\) , \( a + 1\) , \( -3\) , \( -2\bigr] \) |
${y}^2+\left(a+1\right){y}={x}^{3}-3{x}-2$ |
11664.5-b1 |
11664.5-b |
$1$ |
$1$ |
\(\Q(\sqrt{-7}) \) |
$2$ |
$[0, 1]$ |
11664.5 |
\( 2^{4} \cdot 3^{6} \) |
\( 2^{12} \cdot 3^{6} \) |
$2.45697$ |
$(-a+1), (3)$ |
$1$ |
$\mathsf{trivial}$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
✓ |
$3$ |
3Cn |
$1$ |
\( 1 \) |
$0.423849156$ |
$3.041980706$ |
1.949300302 |
\( 110592 \) |
\( \bigl[0\) , \( 0\) , \( a + 1\) , \( 9 a - 3\) , \( 6 a + 10\bigr] \) |
${y}^2+\left(a+1\right){y}={x}^{3}+\left(9a-3\right){x}+6a+10$ |
11664.5-c1 |
11664.5-c |
$1$ |
$1$ |
\(\Q(\sqrt{-7}) \) |
$2$ |
$[0, 1]$ |
11664.5 |
\( 2^{4} \cdot 3^{6} \) |
\( 2^{12} \cdot 3^{18} \) |
$2.45697$ |
$(-a+1), (3)$ |
$1$ |
$\mathsf{trivial}$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
✓ |
$3$ |
3Cn |
$1$ |
\( 2 \cdot 3 \) |
$0.196253347$ |
$1.348697722$ |
2.401009724 |
\( 27 \) |
\( \bigl[a + 1\) , \( 1\) , \( a + 1\) , \( -6 a + 2\) , \( 20 a + 36\bigr] \) |
${y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^{3}+{x}^{2}+\left(-6a+2\right){x}+20a+36$ |
11664.5-d1 |
11664.5-d |
$1$ |
$1$ |
\(\Q(\sqrt{-7}) \) |
$2$ |
$[0, 1]$ |
11664.5 |
\( 2^{4} \cdot 3^{6} \) |
\( 2^{12} \cdot 3^{18} \) |
$2.45697$ |
$(-a+1), (3)$ |
0 |
$\mathsf{trivial}$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
✓ |
$3$ |
3Cn |
$1$ |
\( 1 \) |
$1$ |
$1.301385446$ |
0.983754928 |
\( 1215 a + 27 \) |
\( \bigl[a + 1\) , \( 1\) , \( a + 1\) , \( -6 a + 29\) , \( 47 a - 18\bigr] \) |
${y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^{3}+{x}^{2}+\left(-6a+29\right){x}+47a-18$ |
11664.5-e1 |
11664.5-e |
$1$ |
$1$ |
\(\Q(\sqrt{-7}) \) |
$2$ |
$[0, 1]$ |
11664.5 |
\( 2^{4} \cdot 3^{6} \) |
\( 2^{12} \cdot 3^{6} \) |
$2.45697$ |
$(-a+1), (3)$ |
$1$ |
$\mathsf{trivial}$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
✓ |
$3$ |
3Cn |
$1$ |
\( 2 \) |
$0.369539350$ |
$4.046093166$ |
4.521031537 |
\( 27 \) |
\( \bigl[a + 1\) , \( 1\) , \( 0\) , \( 0\) , \( -a - 1\bigr] \) |
${y}^2+\left(a+1\right){x}{y}={x}^{3}+{x}^{2}-a-1$ |
11664.5-f1 |
11664.5-f |
$1$ |
$1$ |
\(\Q(\sqrt{-7}) \) |
$2$ |
$[0, 1]$ |
11664.5 |
\( 2^{4} \cdot 3^{6} \) |
\( 2^{12} \cdot 3^{6} \) |
$2.45697$ |
$(-a+1), (3)$ |
0 |
$\mathsf{trivial}$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
✓ |
$3$ |
3Cn |
$1$ |
\( 1 \) |
$1$ |
$3.904156338$ |
2.951264786 |
\( 1215 a + 27 \) |
\( \bigl[a + 1\) , \( 1\) , \( 0\) , \( 3\) , \( -a + 2\bigr] \) |
${y}^2+\left(a+1\right){x}{y}={x}^{3}+{x}^{2}+3{x}-a+2$ |
11664.5-g1 |
11664.5-g |
$1$ |
$1$ |
\(\Q(\sqrt{-7}) \) |
$2$ |
$[0, 1]$ |
11664.5 |
\( 2^{4} \cdot 3^{6} \) |
\( 2^{12} \cdot 3^{18} \) |
$2.45697$ |
$(-a+1), (3)$ |
0 |
$\mathsf{trivial}$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
✓ |
$3$ |
3Cn |
$1$ |
\( 2^{2} \) |
$1$ |
$1.301385446$ |
3.935019714 |
\( -1215 a + 1242 \) |
\( \bigl[0\) , \( 0\) , \( a + 1\) , \( -27\) , \( -21 a + 61\bigr] \) |
${y}^2+\left(a+1\right){y}={x}^{3}-27{x}-21a+61$ |
11664.5-h1 |
11664.5-h |
$1$ |
$1$ |
\(\Q(\sqrt{-7}) \) |
$2$ |
$[0, 1]$ |
11664.5 |
\( 2^{4} \cdot 3^{6} \) |
\( 2^{12} \cdot 3^{18} \) |
$2.45697$ |
$(-a+1), (3)$ |
$1$ |
$\mathsf{trivial}$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
✓ |
$3$ |
3Cn |
$1$ |
\( 3 \) |
$1.618942499$ |
$1.013993568$ |
7.445585420 |
\( 110592 \) |
\( \bigl[0\) , \( 0\) , \( a + 1\) , \( 81 a - 27\) , \( -183 a - 263\bigr] \) |
${y}^2+\left(a+1\right){y}={x}^{3}+\left(81a-27\right){x}-183a-263$ |
*The rank, regulator and analytic order of Ш are
not known for all curves in the database; curves for which these are
unknown will not appear in searches specifying one of these
quantities.