Learn more

The results below are complete, since the LMFDB contains all elliptic curves with conductor norm at most 10000 over imaginary quadratic fields with absolute discriminant 67

Note: The completeness Only modular elliptic curves are included

Refine search


Results (6 matches)

  displayed columns for results
Label Class Base field Conductor norm Rank Torsion CM Sato-Tate Regulator Period Leading coeff j-invariant Weierstrass coefficients Weierstrass equation
196.1-a1 196.1-a \(\Q(\sqrt{-67}) \) \( 2^{2} \cdot 7^{2} \) $0 \le r \le 1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $0.875417135$ 4.861651226 \( -\frac{548347731625}{1835008} \) \( \bigl[1\) , \( 0\) , \( 1\) , \( -171\) , \( -874\bigr] \) ${y}^2+{x}{y}+{y}={x}^3-171{x}-874$
196.1-a2 196.1-a \(\Q(\sqrt{-67}) \) \( 2^{2} \cdot 7^{2} \) $0 \le r \le 1$ $\Z/6\Z$ $\mathrm{SU}(2)$ $1$ $7.878754216$ 4.861651226 \( -\frac{15625}{28} \) \( \bigl[1\) , \( 0\) , \( 1\) , \( -1\) , \( 0\bigr] \) ${y}^2+{x}{y}+{y}={x}^3-{x}$
196.1-a3 196.1-a \(\Q(\sqrt{-67}) \) \( 2^{2} \cdot 7^{2} \) $0 \le r \le 1$ $\Z/6\Z$ $\mathrm{SU}(2)$ $1$ $2.626251405$ 4.861651226 \( \frac{9938375}{21952} \) \( \bigl[1\) , \( 0\) , \( 1\) , \( 4\) , \( -6\bigr] \) ${y}^2+{x}{y}+{y}={x}^3+4{x}-6$
196.1-a4 196.1-a \(\Q(\sqrt{-67}) \) \( 2^{2} \cdot 7^{2} \) $0 \le r \le 1$ $\Z/6\Z$ $\mathrm{SU}(2)$ $1$ $1.313125702$ 4.861651226 \( \frac{4956477625}{941192} \) \( \bigl[1\) , \( 0\) , \( 1\) , \( -36\) , \( -70\bigr] \) ${y}^2+{x}{y}+{y}={x}^3-36{x}-70$
196.1-a5 196.1-a \(\Q(\sqrt{-67}) \) \( 2^{2} \cdot 7^{2} \) $0 \le r \le 1$ $\Z/6\Z$ $\mathrm{SU}(2)$ $1$ $3.939377108$ 4.861651226 \( \frac{128787625}{98} \) \( \bigl[1\) , \( 0\) , \( 1\) , \( -11\) , \( 12\bigr] \) ${y}^2+{x}{y}+{y}={x}^3-11{x}+12$
196.1-a6 196.1-a \(\Q(\sqrt{-67}) \) \( 2^{2} \cdot 7^{2} \) $0 \le r \le 1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $0.437708567$ 4.861651226 \( \frac{2251439055699625}{25088} \) \( \bigl[1\) , \( 0\) , \( 1\) , \( -2731\) , \( -55146\bigr] \) ${y}^2+{x}{y}+{y}={x}^3-2731{x}-55146$
  displayed columns for results

  *The rank, regulator and analytic order of Ш are not known for all curves in the database; curves for which these are unknown will not appear in searches specifying one of these quantities.