Learn more

The results below are complete, since the LMFDB contains all elliptic curves with conductor norm at most 1000 over imaginary quadratic fields with absolute discriminant 52

Note: The completeness Only modular elliptic curves are included

Refine search


Results (6 matches)

  displayed columns for results
Label Class Base field Conductor norm Rank Torsion CM Sato-Tate Regulator Period Leading coeff j-invariant Weierstrass coefficients Weierstrass equation
64.1-a1 64.1-a \(\Q(\sqrt{-13}) \) \( 2^{6} \) 0 $\mathsf{trivial}$ $\mathrm{SU}(2)$ $1$ $7.681576726$ 2.130486058 \( -74088 \) \( \bigl[a + 1\) , \( a\) , \( a + 1\) , \( -4 a + 1\) , \( 10\bigr] \) ${y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^3+a{x}^2+\left(-4a+1\right){x}+10$
64.1-b1 64.1-b \(\Q(\sqrt{-13}) \) \( 2^{6} \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $-4$ $N(\mathrm{U}(1))$ $5.832511736$ $6.875185818$ 2.780407135 \( 1728 \) \( \bigl[0\) , \( 0\) , \( 0\) , \( -1\) , \( 0\bigr] \) ${y}^2={x}^3-{x}$
64.1-b2 64.1-b \(\Q(\sqrt{-13}) \) \( 2^{6} \) $1$ $\Z/4\Z$ $-4$ $N(\mathrm{U}(1))$ $2.916255868$ $6.875185818$ 2.780407135 \( 1728 \) \( \bigl[0\) , \( 0\) , \( 0\) , \( 4\) , \( 0\bigr] \) ${y}^2={x}^3+4{x}$
64.1-b3 64.1-b \(\Q(\sqrt{-13}) \) \( 2^{6} \) $1$ $\Z/2\Z$ $-16$ $N(\mathrm{U}(1))$ $2.916255868$ $6.875185818$ 2.780407135 \( 287496 \) \( \bigl[0\) , \( 0\) , \( 0\) , \( -11\) , \( -14\bigr] \) ${y}^2={x}^3-11{x}-14$
64.1-b4 64.1-b \(\Q(\sqrt{-13}) \) \( 2^{6} \) $1$ $\Z/4\Z$ $-16$ $N(\mathrm{U}(1))$ $11.66502347$ $6.875185818$ 2.780407135 \( 287496 \) \( \bigl[0\) , \( 0\) , \( 0\) , \( -11\) , \( 14\bigr] \) ${y}^2={x}^3-11{x}+14$
64.1-c1 64.1-c \(\Q(\sqrt{-13}) \) \( 2^{6} \) 0 $\mathsf{trivial}$ $\mathrm{SU}(2)$ $1$ $7.681576726$ 2.130486058 \( -74088 \) \( \bigl[a + 1\) , \( a\) , \( 0\) , \( -3 a - 5\) , \( a + 7\bigr] \) ${y}^2+\left(a+1\right){x}{y}={x}^3+a{x}^2+\left(-3a-5\right){x}+a+7$
  displayed columns for results

  *The rank, regulator and analytic order of Ш are not known for all curves in the database; curves for which these are unknown will not appear in searches specifying one of these quantities.