Learn more

Refine search


Results (1-50 of 664 matches)

Next   displayed columns for results
Label Class Base field Conductor norm Rank Torsion CM Sato-Tate Regulator Period Leading coeff j-invariant Weierstrass coefficients Weierstrass equation
16.1-a1 16.1-a Q(13)\Q(\sqrt{-13}) 24 2^{4} 11 trivial\mathsf{trivial} SU(2)\mathrm{SU}(2) 1.6880260591.688026059 0.9871293250.987129325 1.848593902 168091426932768 -\frac{1680914269}{32768} [a+1 \bigl[a + 1 , a -a , 0 0 , a+101 a + 101 , 124a99] -124 a - 99\bigr] y2+(a+1)xy=x3ax2+(a+101)x124a99{y}^2+\left(a+1\right){x}{y}={x}^3-a{x}^2+\left(a+101\right){x}-124a-99
16.1-a2 16.1-a Q(13)\Q(\sqrt{-13}) 24 2^{4} 11 trivial\mathsf{trivial} SU(2)\mathrm{SU}(2) 0.3376052110.337605211 4.9356466284.935646628 1.848593902 13318 \frac{1331}{8} [a+1 \bigl[a + 1 , a -a , 0 0 , a+1 a + 1 , 1] 1\bigr] y2+(a+1)xy=x3ax2+(a+1)x+1{y}^2+\left(a+1\right){x}{y}={x}^3-a{x}^2+\left(a+1\right){x}+1
16.1-b1 16.1-b Q(13)\Q(\sqrt{-13}) 24 2^{4} 11 trivial\mathsf{trivial} SU(2)\mathrm{SU}(2) 1.6880260591.688026059 0.9871293250.987129325 1.848593902 168091426932768 -\frac{1680914269}{32768} [a+1 \bigl[a + 1 , 0 0 , 0 0 , a+101 -a + 101 , 124a99] 124 a - 99\bigr] y2+(a+1)xy=x3+(a+101)x+124a99{y}^2+\left(a+1\right){x}{y}={x}^3+\left(-a+101\right){x}+124a-99
16.1-b2 16.1-b Q(13)\Q(\sqrt{-13}) 24 2^{4} 11 trivial\mathsf{trivial} SU(2)\mathrm{SU}(2) 0.3376052110.337605211 4.9356466284.935646628 1.848593902 13318 \frac{1331}{8} [a+1 \bigl[a + 1 , 0 0 , 0 0 , a+1 -a + 1 , 1] 1\bigr] y2+(a+1)xy=x3+(a+1)x+1{y}^2+\left(a+1\right){x}{y}={x}^3+\left(-a+1\right){x}+1
26.1-a1 26.1-a Q(13)\Q(\sqrt{-13}) 213 2 \cdot 13 0 trivial\mathsf{trivial} SU(2)\mathrm{SU}(2) 11 0.8969341300.896934130 0.995059076 107309786191936656 -\frac{10730978619193}{6656} [1 \bigl[1 , 0 0 , 1 1 , 460 -460 , 3830] -3830\bigr] y2+xy+y=x3460x3830{y}^2+{x}{y}+{y}={x}^3-460{x}-3830
26.1-a2 26.1-a Q(13)\Q(\sqrt{-13}) 213 2 \cdot 13 0 Z/3Z\Z/3\Z SU(2)\mathrm{SU}(2) 11 2.6908023922.690802392 0.995059076 1021831317576 -\frac{10218313}{17576} [1 \bigl[1 , 0 0 , 1 1 , 5 -5 , 8] -8\bigr] y2+xy+y=x35x8{y}^2+{x}{y}+{y}={x}^3-5{x}-8
26.1-a3 26.1-a Q(13)\Q(\sqrt{-13}) 213 2 \cdot 13 0 Z/3Z\Z/3\Z SU(2)\mathrm{SU}(2) 11 8.0724071788.072407178 0.995059076 1216726 \frac{12167}{26} [1 \bigl[1 , 0 0 , 1 1 , 0 0 , 0] 0\bigr] y2+xy+y=x3{y}^2+{x}{y}+{y}={x}^3
26.1-b1 26.1-b Q(13)\Q(\sqrt{-13}) 213 2 \cdot 13 11 trivial\mathsf{trivial} SU(2)\mathrm{SU}(2) 1.3834480271.383448027 0.5601285020.560128502 1.719367970 1064019559329125497034 -\frac{1064019559329}{125497034} [a \bigl[a , 1 1 , 0 0 , 211 -211 , 1469] 1469\bigr] y2+axy=x3+x2211x+1469{y}^2+a{x}{y}={x}^3+{x}^2-211{x}+1469
26.1-b2 26.1-b Q(13)\Q(\sqrt{-13}) 213 2 \cdot 13 11 trivial\mathsf{trivial} SU(2)\mathrm{SU}(2) 0.1976354320.197635432 3.9208995193.920899519 1.719367970 21466891664 -\frac{2146689}{1664} [a \bigl[a , 1 1 , 0 0 , 1 -1 , 1] -1\bigr] y2+axy=x3+x2x1{y}^2+a{x}{y}={x}^3+{x}^2-{x}-1
26.1-c1 26.1-c Q(13)\Q(\sqrt{-13}) 213 2 \cdot 13 11 trivial\mathsf{trivial} SU(2)\mathrm{SU}(2) 0.1662881910.166288191 0.8969341300.896934130 2.978398339 107309786191936656 -\frac{10730978619193}{6656} [a \bigl[a , 0 0 , 0 0 , 456 -456 , 4288] 4288\bigr] y2+axy=x3456x+4288{y}^2+a{x}{y}={x}^3-456{x}+4288
26.1-c2 26.1-c Q(13)\Q(\sqrt{-13}) 213 2 \cdot 13 11 trivial\mathsf{trivial} SU(2)\mathrm{SU}(2) 0.0554293970.055429397 2.6908023922.690802392 2.978398339 1021831317576 -\frac{10218313}{17576} [a \bigl[a , 0 0 , 0 0 , 1 -1 , 11] 11\bigr] y2+axy=x3x+11{y}^2+a{x}{y}={x}^3-{x}+11
26.1-c3 26.1-c Q(13)\Q(\sqrt{-13}) 213 2 \cdot 13 11 trivial\mathsf{trivial} SU(2)\mathrm{SU}(2) 0.1662881910.166288191 8.0724071788.072407178 2.978398339 1216726 \frac{12167}{26} [a \bigl[a , 0 0 , 0 0 , 4 4 , 2] -2\bigr] y2+axy=x3+4x2{y}^2+a{x}{y}={x}^3+4{x}-2
26.1-d1 26.1-d Q(13)\Q(\sqrt{-13}) 213 2 \cdot 13 0 trivial\mathsf{trivial} SU(2)\mathrm{SU}(2) 11 0.5601285020.560128502 2.485627123 1064019559329125497034 -\frac{1064019559329}{125497034} [1 \bigl[1 , 1 -1 , 1 1 , 213 -213 , 1257] -1257\bigr] y2+xy+y=x3x2213x1257{y}^2+{x}{y}+{y}={x}^3-{x}^2-213{x}-1257
26.1-d2 26.1-d Q(13)\Q(\sqrt{-13}) 213 2 \cdot 13 0 Z/7Z\Z/7\Z SU(2)\mathrm{SU}(2) 11 3.9208995193.920899519 2.485627123 21466891664 -\frac{2146689}{1664} [1 \bigl[1 , 1 -1 , 1 1 , 3 -3 , 3] 3\bigr] y2+xy+y=x3x23x+3{y}^2+{x}{y}+{y}={x}^3-{x}^2-3{x}+3
49.1-a1 49.1-a Q(13)\Q(\sqrt{-13}) 72 7^{2} 0 trivial\mathsf{trivial} SU(2)\mathrm{SU}(2) 11 4.5615033264.561503326 1.265133395 3703a+11250 -3703 a + 11250 [a \bigl[a , a+1 a + 1 , a+1 a + 1 , a+5 -a + 5 , a2] -a - 2\bigr] y2+axy+(a+1)y=x3+(a+1)x2+(a+5)xa2{y}^2+a{x}{y}+\left(a+1\right){y}={x}^3+\left(a+1\right){x}^2+\left(-a+5\right){x}-a-2
49.1-a2 49.1-a Q(13)\Q(\sqrt{-13}) 72 7^{2} 0 trivial\mathsf{trivial} SU(2)\mathrm{SU}(2) 11 4.5615033264.561503326 1.265133395 3703a+11250 3703 a + 11250 [a+1 \bigl[a + 1 , a+1 a + 1 , a+1 a + 1 , 6a13 -6 a - 13 , a+43] a + 43\bigr] y2+(a+1)xy+(a+1)y=x3+(a+1)x2+(6a13)x+a+43{y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^3+\left(a+1\right){x}^2+\left(-6a-13\right){x}+a+43
49.1-b1 49.1-b Q(13)\Q(\sqrt{-13}) 72 7^{2} 0 trivial\mathsf{trivial} SU(2)\mathrm{SU}(2) 11 4.5615033264.561503326 1.265133395 3703a+11250 -3703 a + 11250 [1 \bigl[1 , a1 -a - 1 , a a , a3 a - 3 , 11] 11\bigr] y2+xy+ay=x3+(a1)x2+(a3)x+11{y}^2+{x}{y}+a{y}={x}^3+\left(-a-1\right){x}^2+\left(a-3\right){x}+11
49.1-b2 49.1-b Q(13)\Q(\sqrt{-13}) 72 7^{2} 0 trivial\mathsf{trivial} SU(2)\mathrm{SU}(2) 11 4.5615033264.561503326 1.265133395 3703a+11250 3703 a + 11250 [a+1 \bigl[a + 1 , a1 a - 1 , 0 0 , 7a15 -7 a - 15 , 6a+37] -6 a + 37\bigr] y2+(a+1)xy=x3+(a1)x2+(7a15)x6a+37{y}^2+\left(a+1\right){x}{y}={x}^3+\left(a-1\right){x}^2+\left(-7a-15\right){x}-6a+37
49.3-a1 49.3-a Q(13)\Q(\sqrt{-13}) 72 7^{2} 0 trivial\mathsf{trivial} SU(2)\mathrm{SU}(2) 11 4.5615033264.561503326 1.265133395 3703a+11250 -3703 a + 11250 [a+1 \bigl[a + 1 , a+1 a + 1 , 0 0 , a19 a - 19 , 14a+1] -14 a + 1\bigr] y2+(a+1)xy=x3+(a+1)x2+(a19)x14a+1{y}^2+\left(a+1\right){x}{y}={x}^3+\left(a+1\right){x}^2+\left(a-19\right){x}-14a+1
49.3-a2 49.3-a Q(13)\Q(\sqrt{-13}) 72 7^{2} 0 trivial\mathsf{trivial} SU(2)\mathrm{SU}(2) 11 4.5615033264.561503326 1.265133395 3703a+11250 3703 a + 11250 [a \bigl[a , a+1 -a + 1 , a+1 a + 1 , 5 5 , 2] -2\bigr] y2+axy+(a+1)y=x3+(a+1)x2+5x2{y}^2+a{x}{y}+\left(a+1\right){y}={x}^3+\left(-a+1\right){x}^2+5{x}-2
49.3-b1 49.3-b Q(13)\Q(\sqrt{-13}) 72 7^{2} 0 trivial\mathsf{trivial} SU(2)\mathrm{SU}(2) 11 4.5615033264.561503326 1.265133395 3703a+11250 -3703 a + 11250 [a+1 \bigl[a + 1 , a1 a - 1 , a+1 a + 1 , 2a9 -2 a - 9 , 3a+1] -3 a + 1\bigr] y2+(a+1)xy+(a+1)y=x3+(a1)x2+(2a9)x3a+1{y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^3+\left(a-1\right){x}^2+\left(-2a-9\right){x}-3a+1
49.3-b2 49.3-b Q(13)\Q(\sqrt{-13}) 72 7^{2} 0 trivial\mathsf{trivial} SU(2)\mathrm{SU}(2) 11 4.5615033264.561503326 1.265133395 3703a+11250 3703 a + 11250 [1 \bigl[1 , a1 a - 1 , a a , 2a3 -2 a - 3 , 11] 11\bigr] y2+xy+ay=x3+(a1)x2+(2a3)x+11{y}^2+{x}{y}+a{y}={x}^3+\left(a-1\right){x}^2+\left(-2a-3\right){x}+11
52.1-a1 52.1-a Q(13)\Q(\sqrt{-13}) 2213 2^{2} \cdot 13 0 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 11 4.7386202784.738620278 0.657128399 432169 \frac{432}{169} [0 \bigl[0 , 0 0 , 0 0 , 1 1 , 10] -10\bigr] y2=x3+x10{y}^2={x}^3+{x}-10
52.1-a2 52.1-a Q(13)\Q(\sqrt{-13}) 2213 2^{2} \cdot 13 0 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 11 4.7386202784.738620278 0.657128399 44236813 \frac{442368}{13} [0 \bigl[0 , 0 0 , 0 0 , 4 -4 , 3] -3\bigr] y2=x34x3{y}^2={x}^3-4{x}-3
52.1-b1 52.1-b Q(13)\Q(\sqrt{-13}) 2213 2^{2} \cdot 13 0 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 11 4.7386202784.738620278 1.971385198 432169 \frac{432}{169} [0 \bigl[0 , 0 0 , 0 0 , 1 1 , 10] 10\bigr] y2=x3+x+10{y}^2={x}^3+{x}+10
52.1-b2 52.1-b Q(13)\Q(\sqrt{-13}) 2213 2^{2} \cdot 13 0 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 11 4.7386202784.738620278 1.971385198 44236813 \frac{442368}{13} [0 \bigl[0 , 0 0 , 0 0 , 4 -4 , 3] 3\bigr] y2=x34x+3{y}^2={x}^3-4{x}+3
64.1-a1 64.1-a Q(13)\Q(\sqrt{-13}) 26 2^{6} 0 trivial\mathsf{trivial} SU(2)\mathrm{SU}(2) 11 7.6815767267.681576726 2.130486058 74088 -74088 [a+1 \bigl[a + 1 , a a , a+1 a + 1 , 4a+1 -4 a + 1 , 10] 10\bigr] y2+(a+1)xy+(a+1)y=x3+ax2+(4a+1)x+10{y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^3+a{x}^2+\left(-4a+1\right){x}+10
64.1-b1 64.1-b Q(13)\Q(\sqrt{-13}) 26 2^{6} 11 Z/2ZZ/2Z\Z/2\Z\oplus\Z/2\Z 4-4 N(U(1))N(\mathrm{U}(1)) 5.8325117365.832511736 6.8751858186.875185818 2.780407135 1728 1728 [0 \bigl[0 , 0 0 , 0 0 , 1 -1 , 0] 0\bigr] y2=x3x{y}^2={x}^3-{x}
64.1-b2 64.1-b Q(13)\Q(\sqrt{-13}) 26 2^{6} 11 Z/4Z\Z/4\Z 4-4 N(U(1))N(\mathrm{U}(1)) 2.9162558682.916255868 6.8751858186.875185818 2.780407135 1728 1728 [0 \bigl[0 , 0 0 , 0 0 , 4 4 , 0] 0\bigr] y2=x3+4x{y}^2={x}^3+4{x}
64.1-b3 64.1-b Q(13)\Q(\sqrt{-13}) 26 2^{6} 11 Z/2Z\Z/2\Z 16-16 N(U(1))N(\mathrm{U}(1)) 2.9162558682.916255868 6.8751858186.875185818 2.780407135 287496 287496 [0 \bigl[0 , 0 0 , 0 0 , 11 -11 , 14] -14\bigr] y2=x311x14{y}^2={x}^3-11{x}-14
64.1-b4 64.1-b Q(13)\Q(\sqrt{-13}) 26 2^{6} 11 Z/4Z\Z/4\Z 16-16 N(U(1))N(\mathrm{U}(1)) 11.6650234711.66502347 6.8751858186.875185818 2.780407135 287496 287496 [0 \bigl[0 , 0 0 , 0 0 , 11 -11 , 14] 14\bigr] y2=x311x+14{y}^2={x}^3-11{x}+14
64.1-c1 64.1-c Q(13)\Q(\sqrt{-13}) 26 2^{6} 0 trivial\mathsf{trivial} SU(2)\mathrm{SU}(2) 11 7.6815767267.681576726 2.130486058 74088 -74088 [a+1 \bigl[a + 1 , a a , 0 0 , 3a5 -3 a - 5 , a+7] a + 7\bigr] y2+(a+1)xy=x3+ax2+(3a5)x+a+7{y}^2+\left(a+1\right){x}{y}={x}^3+a{x}^2+\left(-3a-5\right){x}+a+7
72.1-a1 72.1-a Q(13)\Q(\sqrt{-13}) 2332 2^{3} \cdot 3^{2} 11 Z/8Z\Z/8\Z SU(2)\mathrm{SU}(2) 11.4502462211.45024622 1.8176735081.817673508 2.886217342 2076466561 \frac{207646}{6561} [0 \bigl[0 , 1 1 , 0 0 , 16 16 , 180] 180\bigr] y2=x3+x2+16x+180{y}^2={x}^3+{x}^2+16{x}+180
72.1-a2 72.1-a Q(13)\Q(\sqrt{-13}) 2332 2^{3} \cdot 3^{2} 11 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 1.4312807781.431280778 7.2706940357.270694035 2.886217342 20483 \frac{2048}{3} [0 \bigl[0 , 1 1 , 0 0 , 1 1 , 0] 0\bigr] y2=x3+x2+x{y}^2={x}^3+{x}^2+{x}
72.1-a3 72.1-a Q(13)\Q(\sqrt{-13}) 2332 2^{3} \cdot 3^{2} 11 Z/2ZZ/2Z\Z/2\Z\oplus\Z/2\Z SU(2)\mathrm{SU}(2) 2.8625615572.862561557 7.2706940357.270694035 2.886217342 351529 \frac{35152}{9} [0 \bigl[0 , 1 1 , 0 0 , 4 -4 , 4] -4\bigr] y2=x3+x24x4{y}^2={x}^3+{x}^2-4{x}-4
72.1-a4 72.1-a Q(13)\Q(\sqrt{-13}) 2332 2^{3} \cdot 3^{2} 11 Z/2ZZ/4Z\Z/2\Z\oplus\Z/4\Z SU(2)\mathrm{SU}(2) 5.7251231145.725123114 3.6353470173.635347017 2.886217342 155606881 \frac{1556068}{81} [0 \bigl[0 , 1 1 , 0 0 , 24 -24 , 36] 36\bigr] y2=x3+x224x+36{y}^2={x}^3+{x}^2-24{x}+36
72.1-a5 72.1-a Q(13)\Q(\sqrt{-13}) 2332 2^{3} \cdot 3^{2} 11 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 1.4312807781.431280778 3.6353470173.635347017 2.886217342 287562283 \frac{28756228}{3} [0 \bigl[0 , 1 1 , 0 0 , 64 -64 , 220] -220\bigr] y2=x3+x264x220{y}^2={x}^3+{x}^2-64{x}-220
72.1-a6 72.1-a Q(13)\Q(\sqrt{-13}) 2332 2^{3} \cdot 3^{2} 11 Z/4Z\Z/4\Z SU(2)\mathrm{SU}(2) 11.4502462211.45024622 1.8176735081.817673508 2.886217342 30656171549 \frac{3065617154}{9} [0 \bigl[0 , 1 1 , 0 0 , 384 -384 , 2772] 2772\bigr] y2=x3+x2384x+2772{y}^2={x}^3+{x}^2-384{x}+2772
72.1-b1 72.1-b Q(13)\Q(\sqrt{-13}) 2332 2^{3} \cdot 3^{2} 0 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 11 1.8176735081.817673508 2.016527704 2076466561 \frac{207646}{6561} [0 \bigl[0 , 1 -1 , 0 0 , 16 16 , 180] -180\bigr] y2=x3x2+16x180{y}^2={x}^3-{x}^2+16{x}-180
72.1-b2 72.1-b Q(13)\Q(\sqrt{-13}) 2332 2^{3} \cdot 3^{2} 0 Z/4Z\Z/4\Z SU(2)\mathrm{SU}(2) 11 7.2706940357.270694035 2.016527704 20483 \frac{2048}{3} [0 \bigl[0 , 1 -1 , 0 0 , 1 1 , 0] 0\bigr] y2=x3x2+x{y}^2={x}^3-{x}^2+{x}
72.1-b3 72.1-b Q(13)\Q(\sqrt{-13}) 2332 2^{3} \cdot 3^{2} 0 Z/2ZZ/4Z\Z/2\Z\oplus\Z/4\Z SU(2)\mathrm{SU}(2) 11 7.2706940357.270694035 2.016527704 351529 \frac{35152}{9} [0 \bigl[0 , 1 -1 , 0 0 , 4 -4 , 4] 4\bigr] y2=x3x24x+4{y}^2={x}^3-{x}^2-4{x}+4
72.1-b4 72.1-b Q(13)\Q(\sqrt{-13}) 2332 2^{3} \cdot 3^{2} 0 Z/2ZZ/2Z\Z/2\Z\oplus\Z/2\Z SU(2)\mathrm{SU}(2) 11 3.6353470173.635347017 2.016527704 155606881 \frac{1556068}{81} [0 \bigl[0 , 1 -1 , 0 0 , 24 -24 , 36] -36\bigr] y2=x3x224x36{y}^2={x}^3-{x}^2-24{x}-36
72.1-b5 72.1-b Q(13)\Q(\sqrt{-13}) 2332 2^{3} \cdot 3^{2} 0 Z/4Z\Z/4\Z SU(2)\mathrm{SU}(2) 11 3.6353470173.635347017 2.016527704 287562283 \frac{28756228}{3} [0 \bigl[0 , 1 -1 , 0 0 , 64 -64 , 220] 220\bigr] y2=x3x264x+220{y}^2={x}^3-{x}^2-64{x}+220
72.1-b6 72.1-b Q(13)\Q(\sqrt{-13}) 2332 2^{3} \cdot 3^{2} 0 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 11 1.8176735081.817673508 2.016527704 30656171549 \frac{3065617154}{9} [0 \bigl[0 , 1 -1 , 0 0 , 384 -384 , 2772] -2772\bigr] y2=x3x2384x2772{y}^2={x}^3-{x}^2-384{x}-2772
98.2-a1 98.2-a Q(13)\Q(\sqrt{-13}) 272 2 \cdot 7^{2} 11 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 10.4055017210.40550172 0.8754171350.875417135 2.526424896 5483477316251835008 -\frac{548347731625}{1835008} [1 \bigl[1 , 0 0 , 1 1 , 171 -171 , 874] -874\bigr] y2+xy+y=x3171x874{y}^2+{x}{y}+{y}={x}^3-171{x}-874
98.2-a2 98.2-a Q(13)\Q(\sqrt{-13}) 272 2 \cdot 7^{2} 11 Z/6Z\Z/6\Z SU(2)\mathrm{SU}(2) 10.4055017210.40550172 7.8787542167.878754216 2.526424896 1562528 -\frac{15625}{28} [1 \bigl[1 , 0 0 , 1 1 , 1 -1 , 0] 0\bigr] y2+xy+y=x3x{y}^2+{x}{y}+{y}={x}^3-{x}
98.2-a3 98.2-a Q(13)\Q(\sqrt{-13}) 272 2 \cdot 7^{2} 11 Z/6Z\Z/6\Z SU(2)\mathrm{SU}(2) 3.4685005743.468500574 2.6262514052.626251405 2.526424896 993837521952 \frac{9938375}{21952} [1 \bigl[1 , 0 0 , 1 1 , 4 4 , 6] -6\bigr] y2+xy+y=x3+4x6{y}^2+{x}{y}+{y}={x}^3+4{x}-6
98.2-a4 98.2-a Q(13)\Q(\sqrt{-13}) 272 2 \cdot 7^{2} 11 Z/6Z\Z/6\Z SU(2)\mathrm{SU}(2) 1.7342502871.734250287 1.3131257021.313125702 2.526424896 4956477625941192 \frac{4956477625}{941192} [1 \bigl[1 , 0 0 , 1 1 , 36 -36 , 70] -70\bigr] y2+xy+y=x336x70{y}^2+{x}{y}+{y}={x}^3-36{x}-70
98.2-a5 98.2-a Q(13)\Q(\sqrt{-13}) 272 2 \cdot 7^{2} 11 Z/6Z\Z/6\Z SU(2)\mathrm{SU}(2) 5.2027508615.202750861 3.9393771083.939377108 2.526424896 12878762598 \frac{128787625}{98} [1 \bigl[1 , 0 0 , 1 1 , 11 -11 , 12] 12\bigr] y2+xy+y=x311x+12{y}^2+{x}{y}+{y}={x}^3-11{x}+12
98.2-a6 98.2-a Q(13)\Q(\sqrt{-13}) 272 2 \cdot 7^{2} 11 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 5.2027508615.202750861 0.4377085670.437708567 2.526424896 225143905569962525088 \frac{2251439055699625}{25088} [1 \bigl[1 , 0 0 , 1 1 , 2731 -2731 , 55146] -55146\bigr] y2+xy+y=x32731x55146{y}^2+{x}{y}+{y}={x}^3-2731{x}-55146
Next   displayed columns for results

  *The rank, regulator and analytic order of Ш are not known for all curves in the database; curves for which these are unknown will not appear in searches specifying one of these quantities.