16.1-a1
16.1-a
2 2 2
5 5 5
Q ( − 13 ) \Q(\sqrt{-13}) Q ( − 1 3 )
2 2 2
[ 0 , 1 ] [0, 1] [ 0 , 1 ]
16.1
2 4 2^{4} 2 4
2 42 2^{42} 2 4 2
1.28875 1.28875 1 . 2 8 8 7 5
( 2 , a + 1 ) (2,a+1) ( 2 , a + 1 )
1 1 1
t r i v i a l \mathsf{trivial} t r i v i a l
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
3 , 5 3, 5 3 , 5
3Ns , 5B
1 1 1
2 2 2
1.688026059 1.688026059 1 . 6 8 8 0 2 6 0 5 9
0.987129325 0.987129325 0 . 9 8 7 1 2 9 3 2 5
1.848593902
− 1680914269 32768 -\frac{1680914269}{32768} − 3 2 7 6 8 1 6 8 0 9 1 4 2 6 9
[ a + 1 \bigl[a + 1 [ a + 1 , − a -a − a , 0 0 0 , a + 101 a + 101 a + 1 0 1 , − 124 a − 99 ] -124 a - 99\bigr] − 1 2 4 a − 9 9 ]
y 2 + ( a + 1 ) x y = x 3 − a x 2 + ( a + 101 ) x − 124 a − 99 {y}^2+\left(a+1\right){x}{y}={x}^3-a{x}^2+\left(a+101\right){x}-124a-99 y 2 + ( a + 1 ) x y = x 3 − a x 2 + ( a + 1 0 1 ) x − 1 2 4 a − 9 9
16.1-a2
16.1-a
2 2 2
5 5 5
Q ( − 13 ) \Q(\sqrt{-13}) Q ( − 1 3 )
2 2 2
[ 0 , 1 ] [0, 1] [ 0 , 1 ]
16.1
2 4 2^{4} 2 4
2 18 2^{18} 2 1 8
1.28875 1.28875 1 . 2 8 8 7 5
( 2 , a + 1 ) (2,a+1) ( 2 , a + 1 )
1 1 1
t r i v i a l \mathsf{trivial} t r i v i a l
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
3 , 5 3, 5 3 , 5
3Ns , 5B
1 1 1
2 2 2
0.337605211 0.337605211 0 . 3 3 7 6 0 5 2 1 1
4.935646628 4.935646628 4 . 9 3 5 6 4 6 6 2 8
1.848593902
1331 8 \frac{1331}{8} 8 1 3 3 1
[ a + 1 \bigl[a + 1 [ a + 1 , − a -a − a , 0 0 0 , a + 1 a + 1 a + 1 , 1 ] 1\bigr] 1 ]
y 2 + ( a + 1 ) x y = x 3 − a x 2 + ( a + 1 ) x + 1 {y}^2+\left(a+1\right){x}{y}={x}^3-a{x}^2+\left(a+1\right){x}+1 y 2 + ( a + 1 ) x y = x 3 − a x 2 + ( a + 1 ) x + 1
16.1-b1
16.1-b
2 2 2
5 5 5
Q ( − 13 ) \Q(\sqrt{-13}) Q ( − 1 3 )
2 2 2
[ 0 , 1 ] [0, 1] [ 0 , 1 ]
16.1
2 4 2^{4} 2 4
2 42 2^{42} 2 4 2
1.28875 1.28875 1 . 2 8 8 7 5
( 2 , a + 1 ) (2,a+1) ( 2 , a + 1 )
1 1 1
t r i v i a l \mathsf{trivial} t r i v i a l
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
3 , 5 3, 5 3 , 5
3Ns , 5B
1 1 1
2 2 2
1.688026059 1.688026059 1 . 6 8 8 0 2 6 0 5 9
0.987129325 0.987129325 0 . 9 8 7 1 2 9 3 2 5
1.848593902
− 1680914269 32768 -\frac{1680914269}{32768} − 3 2 7 6 8 1 6 8 0 9 1 4 2 6 9
[ a + 1 \bigl[a + 1 [ a + 1 , 0 0 0 , 0 0 0 , − a + 101 -a + 101 − a + 1 0 1 , 124 a − 99 ] 124 a - 99\bigr] 1 2 4 a − 9 9 ]
y 2 + ( a + 1 ) x y = x 3 + ( − a + 101 ) x + 124 a − 99 {y}^2+\left(a+1\right){x}{y}={x}^3+\left(-a+101\right){x}+124a-99 y 2 + ( a + 1 ) x y = x 3 + ( − a + 1 0 1 ) x + 1 2 4 a − 9 9
16.1-b2
16.1-b
2 2 2
5 5 5
Q ( − 13 ) \Q(\sqrt{-13}) Q ( − 1 3 )
2 2 2
[ 0 , 1 ] [0, 1] [ 0 , 1 ]
16.1
2 4 2^{4} 2 4
2 18 2^{18} 2 1 8
1.28875 1.28875 1 . 2 8 8 7 5
( 2 , a + 1 ) (2,a+1) ( 2 , a + 1 )
1 1 1
t r i v i a l \mathsf{trivial} t r i v i a l
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
3 , 5 3, 5 3 , 5
3Ns , 5B
1 1 1
2 2 2
0.337605211 0.337605211 0 . 3 3 7 6 0 5 2 1 1
4.935646628 4.935646628 4 . 9 3 5 6 4 6 6 2 8
1.848593902
1331 8 \frac{1331}{8} 8 1 3 3 1
[ a + 1 \bigl[a + 1 [ a + 1 , 0 0 0 , 0 0 0 , − a + 1 -a + 1 − a + 1 , 1 ] 1\bigr] 1 ]
y 2 + ( a + 1 ) x y = x 3 + ( − a + 1 ) x + 1 {y}^2+\left(a+1\right){x}{y}={x}^3+\left(-a+1\right){x}+1 y 2 + ( a + 1 ) x y = x 3 + ( − a + 1 ) x + 1
26.1-a1
26.1-a
3 3 3
9 9 9
Q ( − 13 ) \Q(\sqrt{-13}) Q ( − 1 3 )
2 2 2
[ 0 , 1 ] [0, 1] [ 0 , 1 ]
26.1
2 ⋅ 13 2 \cdot 13 2 ⋅ 1 3
2 18 ⋅ 1 3 2 2^{18} \cdot 13^{2} 2 1 8 ⋅ 1 3 2
1.45507 1.45507 1 . 4 5 5 0 7
( 2 , a + 1 ) , ( a ) (2,a+1), (a) ( 2 , a + 1 ) , ( a )
0
t r i v i a l \mathsf{trivial} t r i v i a l
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
✓
✓
3 3 3
3Cs.1.1
1 1 1
2 2 2^{2} 2 2
1 1 1
0.896934130 0.896934130 0 . 8 9 6 9 3 4 1 3 0
0.995059076
− 10730978619193 6656 -\frac{10730978619193}{6656} − 6 6 5 6 1 0 7 3 0 9 7 8 6 1 9 1 9 3
[ 1 \bigl[1 [ 1 , 0 0 0 , 1 1 1 , − 460 -460 − 4 6 0 , − 3830 ] -3830\bigr] − 3 8 3 0 ]
y 2 + x y + y = x 3 − 460 x − 3830 {y}^2+{x}{y}+{y}={x}^3-460{x}-3830 y 2 + x y + y = x 3 − 4 6 0 x − 3 8 3 0
26.1-a2
26.1-a
3 3 3
9 9 9
Q ( − 13 ) \Q(\sqrt{-13}) Q ( − 1 3 )
2 2 2
[ 0 , 1 ] [0, 1] [ 0 , 1 ]
26.1
2 ⋅ 13 2 \cdot 13 2 ⋅ 1 3
2 6 ⋅ 1 3 6 2^{6} \cdot 13^{6} 2 6 ⋅ 1 3 6
1.45507 1.45507 1 . 4 5 5 0 7
( 2 , a + 1 ) , ( a ) (2,a+1), (a) ( 2 , a + 1 ) , ( a )
0
Z / 3 Z \Z/3\Z Z / 3 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
✓
✓
3 3 3
3Cs.1.1
1 1 1
2 2 ⋅ 3 2^{2} \cdot 3 2 2 ⋅ 3
1 1 1
2.690802392 2.690802392 2 . 6 9 0 8 0 2 3 9 2
0.995059076
− 10218313 17576 -\frac{10218313}{17576} − 1 7 5 7 6 1 0 2 1 8 3 1 3
[ 1 \bigl[1 [ 1 , 0 0 0 , 1 1 1 , − 5 -5 − 5 , − 8 ] -8\bigr] − 8 ]
y 2 + x y + y = x 3 − 5 x − 8 {y}^2+{x}{y}+{y}={x}^3-5{x}-8 y 2 + x y + y = x 3 − 5 x − 8
26.1-a3
26.1-a
3 3 3
9 9 9
Q ( − 13 ) \Q(\sqrt{-13}) Q ( − 1 3 )
2 2 2
[ 0 , 1 ] [0, 1] [ 0 , 1 ]
26.1
2 ⋅ 13 2 \cdot 13 2 ⋅ 1 3
2 2 ⋅ 1 3 2 2^{2} \cdot 13^{2} 2 2 ⋅ 1 3 2
1.45507 1.45507 1 . 4 5 5 0 7
( 2 , a + 1 ) , ( a ) (2,a+1), (a) ( 2 , a + 1 ) , ( a )
0
Z / 3 Z \Z/3\Z Z / 3 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
✓
✓
3 3 3
3Cs.1.1
1 1 1
2 2 2^{2} 2 2
1 1 1
8.072407178 8.072407178 8 . 0 7 2 4 0 7 1 7 8
0.995059076
12167 26 \frac{12167}{26} 2 6 1 2 1 6 7
[ 1 \bigl[1 [ 1 , 0 0 0 , 1 1 1 , 0 0 0 , 0 ] 0\bigr] 0 ]
y 2 + x y + y = x 3 {y}^2+{x}{y}+{y}={x}^3 y 2 + x y + y = x 3
26.1-b1
26.1-b
2 2 2
7 7 7
Q ( − 13 ) \Q(\sqrt{-13}) Q ( − 1 3 )
2 2 2
[ 0 , 1 ] [0, 1] [ 0 , 1 ]
26.1
2 ⋅ 13 2 \cdot 13 2 ⋅ 1 3
2 2 ⋅ 1 3 14 2^{2} \cdot 13^{14} 2 2 ⋅ 1 3 1 4
1.45507 1.45507 1 . 4 5 5 0 7
( 2 , a + 1 ) , ( a ) (2,a+1), (a) ( 2 , a + 1 ) , ( a )
1 1 1
t r i v i a l \mathsf{trivial} t r i v i a l
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
✓
✓
7 7 7
7B.6.1
1 1 1
2 2 2^{2} 2 2
1.383448027 1.383448027 1 . 3 8 3 4 4 8 0 2 7
0.560128502 0.560128502 0 . 5 6 0 1 2 8 5 0 2
1.719367970
− 1064019559329 125497034 -\frac{1064019559329}{125497034} − 1 2 5 4 9 7 0 3 4 1 0 6 4 0 1 9 5 5 9 3 2 9
[ a \bigl[a [ a , 1 1 1 , 0 0 0 , − 211 -211 − 2 1 1 , 1469 ] 1469\bigr] 1 4 6 9 ]
y 2 + a x y = x 3 + x 2 − 211 x + 1469 {y}^2+a{x}{y}={x}^3+{x}^2-211{x}+1469 y 2 + a x y = x 3 + x 2 − 2 1 1 x + 1 4 6 9
26.1-b2
26.1-b
2 2 2
7 7 7
Q ( − 13 ) \Q(\sqrt{-13}) Q ( − 1 3 )
2 2 2
[ 0 , 1 ] [0, 1] [ 0 , 1 ]
26.1
2 ⋅ 13 2 \cdot 13 2 ⋅ 1 3
2 14 ⋅ 1 3 2 2^{14} \cdot 13^{2} 2 1 4 ⋅ 1 3 2
1.45507 1.45507 1 . 4 5 5 0 7
( 2 , a + 1 ) , ( a ) (2,a+1), (a) ( 2 , a + 1 ) , ( a )
1 1 1
t r i v i a l \mathsf{trivial} t r i v i a l
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
✓
✓
7 7 7
7B.6.1
1 1 1
2 2 2^{2} 2 2
0.197635432 0.197635432 0 . 1 9 7 6 3 5 4 3 2
3.920899519 3.920899519 3 . 9 2 0 8 9 9 5 1 9
1.719367970
− 2146689 1664 -\frac{2146689}{1664} − 1 6 6 4 2 1 4 6 6 8 9
[ a \bigl[a [ a , 1 1 1 , 0 0 0 , − 1 -1 − 1 , − 1 ] -1\bigr] − 1 ]
y 2 + a x y = x 3 + x 2 − x − 1 {y}^2+a{x}{y}={x}^3+{x}^2-{x}-1 y 2 + a x y = x 3 + x 2 − x − 1
26.1-c1
26.1-c
3 3 3
9 9 9
Q ( − 13 ) \Q(\sqrt{-13}) Q ( − 1 3 )
2 2 2
[ 0 , 1 ] [0, 1] [ 0 , 1 ]
26.1
2 ⋅ 13 2 \cdot 13 2 ⋅ 1 3
2 18 ⋅ 1 3 2 2^{18} \cdot 13^{2} 2 1 8 ⋅ 1 3 2
1.45507 1.45507 1 . 4 5 5 0 7
( 2 , a + 1 ) , ( a ) (2,a+1), (a) ( 2 , a + 1 ) , ( a )
1 1 1
t r i v i a l \mathsf{trivial} t r i v i a l
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
✓
✓
3 3 3
3Cs
1 1 1
2 2 ⋅ 3 2 2^{2} \cdot 3^{2} 2 2 ⋅ 3 2
0.166288191 0.166288191 0 . 1 6 6 2 8 8 1 9 1
0.896934130 0.896934130 0 . 8 9 6 9 3 4 1 3 0
2.978398339
− 10730978619193 6656 -\frac{10730978619193}{6656} − 6 6 5 6 1 0 7 3 0 9 7 8 6 1 9 1 9 3
[ a \bigl[a [ a , 0 0 0 , 0 0 0 , − 456 -456 − 4 5 6 , 4288 ] 4288\bigr] 4 2 8 8 ]
y 2 + a x y = x 3 − 456 x + 4288 {y}^2+a{x}{y}={x}^3-456{x}+4288 y 2 + a x y = x 3 − 4 5 6 x + 4 2 8 8
26.1-c2
26.1-c
3 3 3
9 9 9
Q ( − 13 ) \Q(\sqrt{-13}) Q ( − 1 3 )
2 2 2
[ 0 , 1 ] [0, 1] [ 0 , 1 ]
26.1
2 ⋅ 13 2 \cdot 13 2 ⋅ 1 3
2 6 ⋅ 1 3 6 2^{6} \cdot 13^{6} 2 6 ⋅ 1 3 6
1.45507 1.45507 1 . 4 5 5 0 7
( 2 , a + 1 ) , ( a ) (2,a+1), (a) ( 2 , a + 1 ) , ( a )
1 1 1
t r i v i a l \mathsf{trivial} t r i v i a l
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
✓
✓
3 3 3
3Cs
1 1 1
2 2 ⋅ 3 2 2^{2} \cdot 3^{2} 2 2 ⋅ 3 2
0.055429397 0.055429397 0 . 0 5 5 4 2 9 3 9 7
2.690802392 2.690802392 2 . 6 9 0 8 0 2 3 9 2
2.978398339
− 10218313 17576 -\frac{10218313}{17576} − 1 7 5 7 6 1 0 2 1 8 3 1 3
[ a \bigl[a [ a , 0 0 0 , 0 0 0 , − 1 -1 − 1 , 11 ] 11\bigr] 1 1 ]
y 2 + a x y = x 3 − x + 11 {y}^2+a{x}{y}={x}^3-{x}+11 y 2 + a x y = x 3 − x + 1 1
26.1-c3
26.1-c
3 3 3
9 9 9
Q ( − 13 ) \Q(\sqrt{-13}) Q ( − 1 3 )
2 2 2
[ 0 , 1 ] [0, 1] [ 0 , 1 ]
26.1
2 ⋅ 13 2 \cdot 13 2 ⋅ 1 3
2 2 ⋅ 1 3 2 2^{2} \cdot 13^{2} 2 2 ⋅ 1 3 2
1.45507 1.45507 1 . 4 5 5 0 7
( 2 , a + 1 ) , ( a ) (2,a+1), (a) ( 2 , a + 1 ) , ( a )
1 1 1
t r i v i a l \mathsf{trivial} t r i v i a l
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
✓
✓
3 3 3
3Cs
1 1 1
2 2 2^{2} 2 2
0.166288191 0.166288191 0 . 1 6 6 2 8 8 1 9 1
8.072407178 8.072407178 8 . 0 7 2 4 0 7 1 7 8
2.978398339
12167 26 \frac{12167}{26} 2 6 1 2 1 6 7
[ a \bigl[a [ a , 0 0 0 , 0 0 0 , 4 4 4 , − 2 ] -2\bigr] − 2 ]
y 2 + a x y = x 3 + 4 x − 2 {y}^2+a{x}{y}={x}^3+4{x}-2 y 2 + a x y = x 3 + 4 x − 2
26.1-d1
26.1-d
2 2 2
7 7 7
Q ( − 13 ) \Q(\sqrt{-13}) Q ( − 1 3 )
2 2 2
[ 0 , 1 ] [0, 1] [ 0 , 1 ]
26.1
2 ⋅ 13 2 \cdot 13 2 ⋅ 1 3
2 2 ⋅ 1 3 14 2^{2} \cdot 13^{14} 2 2 ⋅ 1 3 1 4
1.45507 1.45507 1 . 4 5 5 0 7
( 2 , a + 1 ) , ( a ) (2,a+1), (a) ( 2 , a + 1 ) , ( a )
0
t r i v i a l \mathsf{trivial} t r i v i a l
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
✓
✓
7 7 7
7B.1.1
4 4 4
2 2 2^{2} 2 2
1 1 1
0.560128502 0.560128502 0 . 5 6 0 1 2 8 5 0 2
2.485627123
− 1064019559329 125497034 -\frac{1064019559329}{125497034} − 1 2 5 4 9 7 0 3 4 1 0 6 4 0 1 9 5 5 9 3 2 9
[ 1 \bigl[1 [ 1 , − 1 -1 − 1 , 1 1 1 , − 213 -213 − 2 1 3 , − 1257 ] -1257\bigr] − 1 2 5 7 ]
y 2 + x y + y = x 3 − x 2 − 213 x − 1257 {y}^2+{x}{y}+{y}={x}^3-{x}^2-213{x}-1257 y 2 + x y + y = x 3 − x 2 − 2 1 3 x − 1 2 5 7
26.1-d2
26.1-d
2 2 2
7 7 7
Q ( − 13 ) \Q(\sqrt{-13}) Q ( − 1 3 )
2 2 2
[ 0 , 1 ] [0, 1] [ 0 , 1 ]
26.1
2 ⋅ 13 2 \cdot 13 2 ⋅ 1 3
2 14 ⋅ 1 3 2 2^{14} \cdot 13^{2} 2 1 4 ⋅ 1 3 2
1.45507 1.45507 1 . 4 5 5 0 7
( 2 , a + 1 ) , ( a ) (2,a+1), (a) ( 2 , a + 1 ) , ( a )
0
Z / 7 Z \Z/7\Z Z / 7 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
✓
✓
7 7 7
7B.1.1
4 4 4
2 2 ⋅ 7 2^{2} \cdot 7 2 2 ⋅ 7
1 1 1
3.920899519 3.920899519 3 . 9 2 0 8 9 9 5 1 9
2.485627123
− 2146689 1664 -\frac{2146689}{1664} − 1 6 6 4 2 1 4 6 6 8 9
[ 1 \bigl[1 [ 1 , − 1 -1 − 1 , 1 1 1 , − 3 -3 − 3 , 3 ] 3\bigr] 3 ]
y 2 + x y + y = x 3 − x 2 − 3 x + 3 {y}^2+{x}{y}+{y}={x}^3-{x}^2-3{x}+3 y 2 + x y + y = x 3 − x 2 − 3 x + 3
49.1-a1
49.1-a
2 2 2
7 7 7
Q ( − 13 ) \Q(\sqrt{-13}) Q ( − 1 3 )
2 2 2
[ 0 , 1 ] [0, 1] [ 0 , 1 ]
49.1
7 2 7^{2} 7 2
7 6 7^{6} 7 6
1.70486 1.70486 1 . 7 0 4 8 6
( 7 , a + 1 ) (7,a+1) ( 7 , a + 1 )
0
t r i v i a l \mathsf{trivial} t r i v i a l
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
✓
3 , 7 3, 7 3 , 7
3Nn , 7B
1 1 1
1 1 1
1 1 1
4.561503326 4.561503326 4 . 5 6 1 5 0 3 3 2 6
1.265133395
− 3703 a + 11250 -3703 a + 11250 − 3 7 0 3 a + 1 1 2 5 0
[ a \bigl[a [ a , a + 1 a + 1 a + 1 , a + 1 a + 1 a + 1 , − a + 5 -a + 5 − a + 5 , − a − 2 ] -a - 2\bigr] − a − 2 ]
y 2 + a x y + ( a + 1 ) y = x 3 + ( a + 1 ) x 2 + ( − a + 5 ) x − a − 2 {y}^2+a{x}{y}+\left(a+1\right){y}={x}^3+\left(a+1\right){x}^2+\left(-a+5\right){x}-a-2 y 2 + a x y + ( a + 1 ) y = x 3 + ( a + 1 ) x 2 + ( − a + 5 ) x − a − 2
49.1-a2
49.1-a
2 2 2
7 7 7
Q ( − 13 ) \Q(\sqrt{-13}) Q ( − 1 3 )
2 2 2
[ 0 , 1 ] [0, 1] [ 0 , 1 ]
49.1
7 2 7^{2} 7 2
2 12 ⋅ 7 6 2^{12} \cdot 7^{6} 2 1 2 ⋅ 7 6
1.70486 1.70486 1 . 7 0 4 8 6
( 7 , a + 1 ) (7,a+1) ( 7 , a + 1 )
0
t r i v i a l \mathsf{trivial} t r i v i a l
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
✓
3 , 7 3, 7 3 , 7
3Nn , 7B
1 1 1
1 1 1
1 1 1
4.561503326 4.561503326 4 . 5 6 1 5 0 3 3 2 6
1.265133395
3703 a + 11250 3703 a + 11250 3 7 0 3 a + 1 1 2 5 0
[ a + 1 \bigl[a + 1 [ a + 1 , a + 1 a + 1 a + 1 , a + 1 a + 1 a + 1 , − 6 a − 13 -6 a - 13 − 6 a − 1 3 , a + 43 ] a + 43\bigr] a + 4 3 ]
y 2 + ( a + 1 ) x y + ( a + 1 ) y = x 3 + ( a + 1 ) x 2 + ( − 6 a − 13 ) x + a + 43 {y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^3+\left(a+1\right){x}^2+\left(-6a-13\right){x}+a+43 y 2 + ( a + 1 ) x y + ( a + 1 ) y = x 3 + ( a + 1 ) x 2 + ( − 6 a − 1 3 ) x + a + 4 3
49.1-b1
49.1-b
2 2 2
7 7 7
Q ( − 13 ) \Q(\sqrt{-13}) Q ( − 1 3 )
2 2 2
[ 0 , 1 ] [0, 1] [ 0 , 1 ]
49.1
7 2 7^{2} 7 2
7 6 7^{6} 7 6
1.70486 1.70486 1 . 7 0 4 8 6
( 7 , a + 1 ) (7,a+1) ( 7 , a + 1 )
0
t r i v i a l \mathsf{trivial} t r i v i a l
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
✓
3 , 7 3, 7 3 , 7
3Nn , 7B.2.3
1 1 1
1 1 1
1 1 1
4.561503326 4.561503326 4 . 5 6 1 5 0 3 3 2 6
1.265133395
− 3703 a + 11250 -3703 a + 11250 − 3 7 0 3 a + 1 1 2 5 0
[ 1 \bigl[1 [ 1 , − a − 1 -a - 1 − a − 1 , a a a , a − 3 a - 3 a − 3 , 11 ] 11\bigr] 1 1 ]
y 2 + x y + a y = x 3 + ( − a − 1 ) x 2 + ( a − 3 ) x + 11 {y}^2+{x}{y}+a{y}={x}^3+\left(-a-1\right){x}^2+\left(a-3\right){x}+11 y 2 + x y + a y = x 3 + ( − a − 1 ) x 2 + ( a − 3 ) x + 1 1
49.1-b2
49.1-b
2 2 2
7 7 7
Q ( − 13 ) \Q(\sqrt{-13}) Q ( − 1 3 )
2 2 2
[ 0 , 1 ] [0, 1] [ 0 , 1 ]
49.1
7 2 7^{2} 7 2
2 12 ⋅ 7 6 2^{12} \cdot 7^{6} 2 1 2 ⋅ 7 6
1.70486 1.70486 1 . 7 0 4 8 6
( 7 , a + 1 ) (7,a+1) ( 7 , a + 1 )
0
t r i v i a l \mathsf{trivial} t r i v i a l
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
✓
3 , 7 3, 7 3 , 7
3Nn , 7B.2.3
1 1 1
1 1 1
1 1 1
4.561503326 4.561503326 4 . 5 6 1 5 0 3 3 2 6
1.265133395
3703 a + 11250 3703 a + 11250 3 7 0 3 a + 1 1 2 5 0
[ a + 1 \bigl[a + 1 [ a + 1 , a − 1 a - 1 a − 1 , 0 0 0 , − 7 a − 15 -7 a - 15 − 7 a − 1 5 , − 6 a + 37 ] -6 a + 37\bigr] − 6 a + 3 7 ]
y 2 + ( a + 1 ) x y = x 3 + ( a − 1 ) x 2 + ( − 7 a − 15 ) x − 6 a + 37 {y}^2+\left(a+1\right){x}{y}={x}^3+\left(a-1\right){x}^2+\left(-7a-15\right){x}-6a+37 y 2 + ( a + 1 ) x y = x 3 + ( a − 1 ) x 2 + ( − 7 a − 1 5 ) x − 6 a + 3 7
49.3-a1
49.3-a
2 2 2
7 7 7
Q ( − 13 ) \Q(\sqrt{-13}) Q ( − 1 3 )
2 2 2
[ 0 , 1 ] [0, 1] [ 0 , 1 ]
49.3
7 2 7^{2} 7 2
2 12 ⋅ 7 6 2^{12} \cdot 7^{6} 2 1 2 ⋅ 7 6
1.70486 1.70486 1 . 7 0 4 8 6
( 7 , a + 6 ) (7,a+6) ( 7 , a + 6 )
0
t r i v i a l \mathsf{trivial} t r i v i a l
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
✓
3 , 7 3, 7 3 , 7
3Nn , 7B
1 1 1
1 1 1
1 1 1
4.561503326 4.561503326 4 . 5 6 1 5 0 3 3 2 6
1.265133395
− 3703 a + 11250 -3703 a + 11250 − 3 7 0 3 a + 1 1 2 5 0
[ a + 1 \bigl[a + 1 [ a + 1 , a + 1 a + 1 a + 1 , 0 0 0 , a − 19 a - 19 a − 1 9 , − 14 a + 1 ] -14 a + 1\bigr] − 1 4 a + 1 ]
y 2 + ( a + 1 ) x y = x 3 + ( a + 1 ) x 2 + ( a − 19 ) x − 14 a + 1 {y}^2+\left(a+1\right){x}{y}={x}^3+\left(a+1\right){x}^2+\left(a-19\right){x}-14a+1 y 2 + ( a + 1 ) x y = x 3 + ( a + 1 ) x 2 + ( a − 1 9 ) x − 1 4 a + 1
49.3-a2
49.3-a
2 2 2
7 7 7
Q ( − 13 ) \Q(\sqrt{-13}) Q ( − 1 3 )
2 2 2
[ 0 , 1 ] [0, 1] [ 0 , 1 ]
49.3
7 2 7^{2} 7 2
7 6 7^{6} 7 6
1.70486 1.70486 1 . 7 0 4 8 6
( 7 , a + 6 ) (7,a+6) ( 7 , a + 6 )
0
t r i v i a l \mathsf{trivial} t r i v i a l
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
✓
3 , 7 3, 7 3 , 7
3Nn , 7B
1 1 1
1 1 1
1 1 1
4.561503326 4.561503326 4 . 5 6 1 5 0 3 3 2 6
1.265133395
3703 a + 11250 3703 a + 11250 3 7 0 3 a + 1 1 2 5 0
[ a \bigl[a [ a , − a + 1 -a + 1 − a + 1 , a + 1 a + 1 a + 1 , 5 5 5 , − 2 ] -2\bigr] − 2 ]
y 2 + a x y + ( a + 1 ) y = x 3 + ( − a + 1 ) x 2 + 5 x − 2 {y}^2+a{x}{y}+\left(a+1\right){y}={x}^3+\left(-a+1\right){x}^2+5{x}-2 y 2 + a x y + ( a + 1 ) y = x 3 + ( − a + 1 ) x 2 + 5 x − 2
49.3-b1
49.3-b
2 2 2
7 7 7
Q ( − 13 ) \Q(\sqrt{-13}) Q ( − 1 3 )
2 2 2
[ 0 , 1 ] [0, 1] [ 0 , 1 ]
49.3
7 2 7^{2} 7 2
2 12 ⋅ 7 6 2^{12} \cdot 7^{6} 2 1 2 ⋅ 7 6
1.70486 1.70486 1 . 7 0 4 8 6
( 7 , a + 6 ) (7,a+6) ( 7 , a + 6 )
0
t r i v i a l \mathsf{trivial} t r i v i a l
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
✓
3 , 7 3, 7 3 , 7
3Nn , 7B.2.1
1 1 1
1 1 1
1 1 1
4.561503326 4.561503326 4 . 5 6 1 5 0 3 3 2 6
1.265133395
− 3703 a + 11250 -3703 a + 11250 − 3 7 0 3 a + 1 1 2 5 0
[ a + 1 \bigl[a + 1 [ a + 1 , a − 1 a - 1 a − 1 , a + 1 a + 1 a + 1 , − 2 a − 9 -2 a - 9 − 2 a − 9 , − 3 a + 1 ] -3 a + 1\bigr] − 3 a + 1 ]
y 2 + ( a + 1 ) x y + ( a + 1 ) y = x 3 + ( a − 1 ) x 2 + ( − 2 a − 9 ) x − 3 a + 1 {y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^3+\left(a-1\right){x}^2+\left(-2a-9\right){x}-3a+1 y 2 + ( a + 1 ) x y + ( a + 1 ) y = x 3 + ( a − 1 ) x 2 + ( − 2 a − 9 ) x − 3 a + 1
49.3-b2
49.3-b
2 2 2
7 7 7
Q ( − 13 ) \Q(\sqrt{-13}) Q ( − 1 3 )
2 2 2
[ 0 , 1 ] [0, 1] [ 0 , 1 ]
49.3
7 2 7^{2} 7 2
7 6 7^{6} 7 6
1.70486 1.70486 1 . 7 0 4 8 6
( 7 , a + 6 ) (7,a+6) ( 7 , a + 6 )
0
t r i v i a l \mathsf{trivial} t r i v i a l
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
✓
3 , 7 3, 7 3 , 7
3Nn , 7B.2.1
1 1 1
1 1 1
1 1 1
4.561503326 4.561503326 4 . 5 6 1 5 0 3 3 2 6
1.265133395
3703 a + 11250 3703 a + 11250 3 7 0 3 a + 1 1 2 5 0
[ 1 \bigl[1 [ 1 , a − 1 a - 1 a − 1 , a a a , − 2 a − 3 -2 a - 3 − 2 a − 3 , 11 ] 11\bigr] 1 1 ]
y 2 + x y + a y = x 3 + ( a − 1 ) x 2 + ( − 2 a − 3 ) x + 11 {y}^2+{x}{y}+a{y}={x}^3+\left(a-1\right){x}^2+\left(-2a-3\right){x}+11 y 2 + x y + a y = x 3 + ( a − 1 ) x 2 + ( − 2 a − 3 ) x + 1 1
52.1-a1
52.1-a
2 2 2
2 2 2
Q ( − 13 ) \Q(\sqrt{-13}) Q ( − 1 3 )
2 2 2
[ 0 , 1 ] [0, 1] [ 0 , 1 ]
52.1
2 2 ⋅ 13 2^{2} \cdot 13 2 2 ⋅ 1 3
2 16 ⋅ 1 3 4 2^{16} \cdot 13^{4} 2 1 6 ⋅ 1 3 4
1.73038 1.73038 1 . 7 3 0 3 8
( 2 , a + 1 ) , ( a ) (2,a+1), (a) ( 2 , a + 1 ) , ( a )
0
Z / 2 Z \Z/2\Z Z / 2 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
✓
2 2 2
2B
1 1 1
2 2 2
1 1 1
4.738620278 4.738620278 4 . 7 3 8 6 2 0 2 7 8
0.657128399
432 169 \frac{432}{169} 1 6 9 4 3 2
[ 0 \bigl[0 [ 0 , 0 0 0 , 0 0 0 , 1 1 1 , − 10 ] -10\bigr] − 1 0 ]
y 2 = x 3 + x − 10 {y}^2={x}^3+{x}-10 y 2 = x 3 + x − 1 0
52.1-a2
52.1-a
2 2 2
2 2 2
Q ( − 13 ) \Q(\sqrt{-13}) Q ( − 1 3 )
2 2 2
[ 0 , 1 ] [0, 1] [ 0 , 1 ]
52.1
2 2 ⋅ 13 2^{2} \cdot 13 2 2 ⋅ 1 3
2 8 ⋅ 1 3 2 2^{8} \cdot 13^{2} 2 8 ⋅ 1 3 2
1.73038 1.73038 1 . 7 3 0 3 8
( 2 , a + 1 ) , ( a ) (2,a+1), (a) ( 2 , a + 1 ) , ( a )
0
Z / 2 Z \Z/2\Z Z / 2 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
✓
2 2 2
2B
1 1 1
2 2 2
1 1 1
4.738620278 4.738620278 4 . 7 3 8 6 2 0 2 7 8
0.657128399
442368 13 \frac{442368}{13} 1 3 4 4 2 3 6 8
[ 0 \bigl[0 [ 0 , 0 0 0 , 0 0 0 , − 4 -4 − 4 , − 3 ] -3\bigr] − 3 ]
y 2 = x 3 − 4 x − 3 {y}^2={x}^3-4{x}-3 y 2 = x 3 − 4 x − 3
52.1-b1
52.1-b
2 2 2
2 2 2
Q ( − 13 ) \Q(\sqrt{-13}) Q ( − 1 3 )
2 2 2
[ 0 , 1 ] [0, 1] [ 0 , 1 ]
52.1
2 2 ⋅ 13 2^{2} \cdot 13 2 2 ⋅ 1 3
2 16 ⋅ 1 3 4 2^{16} \cdot 13^{4} 2 1 6 ⋅ 1 3 4
1.73038 1.73038 1 . 7 3 0 3 8
( 2 , a + 1 ) , ( a ) (2,a+1), (a) ( 2 , a + 1 ) , ( a )
0
Z / 2 Z \Z/2\Z Z / 2 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
✓
2 2 2
2B
1 1 1
2 ⋅ 3 2 \cdot 3 2 ⋅ 3
1 1 1
4.738620278 4.738620278 4 . 7 3 8 6 2 0 2 7 8
1.971385198
432 169 \frac{432}{169} 1 6 9 4 3 2
[ 0 \bigl[0 [ 0 , 0 0 0 , 0 0 0 , 1 1 1 , 10 ] 10\bigr] 1 0 ]
y 2 = x 3 + x + 10 {y}^2={x}^3+{x}+10 y 2 = x 3 + x + 1 0
52.1-b2
52.1-b
2 2 2
2 2 2
Q ( − 13 ) \Q(\sqrt{-13}) Q ( − 1 3 )
2 2 2
[ 0 , 1 ] [0, 1] [ 0 , 1 ]
52.1
2 2 ⋅ 13 2^{2} \cdot 13 2 2 ⋅ 1 3
2 8 ⋅ 1 3 2 2^{8} \cdot 13^{2} 2 8 ⋅ 1 3 2
1.73038 1.73038 1 . 7 3 0 3 8
( 2 , a + 1 ) , ( a ) (2,a+1), (a) ( 2 , a + 1 ) , ( a )
0
Z / 2 Z \Z/2\Z Z / 2 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
✓
2 2 2
2B
1 1 1
2 ⋅ 3 2 \cdot 3 2 ⋅ 3
1 1 1
4.738620278 4.738620278 4 . 7 3 8 6 2 0 2 7 8
1.971385198
442368 13 \frac{442368}{13} 1 3 4 4 2 3 6 8
[ 0 \bigl[0 [ 0 , 0 0 0 , 0 0 0 , − 4 -4 − 4 , 3 ] 3\bigr] 3 ]
y 2 = x 3 − 4 x + 3 {y}^2={x}^3-4{x}+3 y 2 = x 3 − 4 x + 3
64.1-a1
64.1-a
1 1 1
1 1 1
Q ( − 13 ) \Q(\sqrt{-13}) Q ( − 1 3 )
2 2 2
[ 0 , 1 ] [0, 1] [ 0 , 1 ]
64.1
2 6 2^{6} 2 6
2 6 2^{6} 2 6
1.82257 1.82257 1 . 8 2 2 5 7
( 2 , a + 1 ) (2,a+1) ( 2 , a + 1 )
0
t r i v i a l \mathsf{trivial} t r i v i a l
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
✓
3 3 3
3Cn
1 1 1
1 1 1
1 1 1
7.681576726 7.681576726 7 . 6 8 1 5 7 6 7 2 6
2.130486058
− 74088 -74088 − 7 4 0 8 8
[ a + 1 \bigl[a + 1 [ a + 1 , a a a , a + 1 a + 1 a + 1 , − 4 a + 1 -4 a + 1 − 4 a + 1 , 10 ] 10\bigr] 1 0 ]
y 2 + ( a + 1 ) x y + ( a + 1 ) y = x 3 + a x 2 + ( − 4 a + 1 ) x + 10 {y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^3+a{x}^2+\left(-4a+1\right){x}+10 y 2 + ( a + 1 ) x y + ( a + 1 ) y = x 3 + a x 2 + ( − 4 a + 1 ) x + 1 0
64.1-b1
64.1-b
4 4 4
4 4 4
Q ( − 13 ) \Q(\sqrt{-13}) Q ( − 1 3 )
2 2 2
[ 0 , 1 ] [0, 1] [ 0 , 1 ]
64.1
2 6 2^{6} 2 6
2 12 2^{12} 2 1 2
1.82257 1.82257 1 . 8 2 2 5 7
( 2 , a + 1 ) (2,a+1) ( 2 , a + 1 )
1 1 1
Z / 2 Z ⊕ Z / 2 Z \Z/2\Z\oplus\Z/2\Z Z / 2 Z ⊕ Z / 2 Z
potential \textsf{potential} potential
− 4 -4 − 4
N ( U ( 1 ) ) N(\mathrm{U}(1)) N ( U ( 1 ) )
✓
✓
✓
2 2 2
2Cs
1 1 1
2 2 2
5.832511736 5.832511736 5 . 8 3 2 5 1 1 7 3 6
6.875185818 6.875185818 6 . 8 7 5 1 8 5 8 1 8
2.780407135
1728 1728 1 7 2 8
[ 0 \bigl[0 [ 0 , 0 0 0 , 0 0 0 , − 1 -1 − 1 , 0 ] 0\bigr] 0 ]
y 2 = x 3 − x {y}^2={x}^3-{x} y 2 = x 3 − x
64.1-b2
64.1-b
4 4 4
4 4 4
Q ( − 13 ) \Q(\sqrt{-13}) Q ( − 1 3 )
2 2 2
[ 0 , 1 ] [0, 1] [ 0 , 1 ]
64.1
2 6 2^{6} 2 6
2 24 2^{24} 2 2 4
1.82257 1.82257 1 . 8 2 2 5 7
( 2 , a + 1 ) (2,a+1) ( 2 , a + 1 )
1 1 1
Z / 4 Z \Z/4\Z Z / 4 Z
potential \textsf{potential} potential
− 4 -4 − 4
N ( U ( 1 ) ) N(\mathrm{U}(1)) N ( U ( 1 ) )
✓
✓
✓
2 2 2
2Cs
1 1 1
2 2 2^{2} 2 2
2.916255868 2.916255868 2 . 9 1 6 2 5 5 8 6 8
6.875185818 6.875185818 6 . 8 7 5 1 8 5 8 1 8
2.780407135
1728 1728 1 7 2 8
[ 0 \bigl[0 [ 0 , 0 0 0 , 0 0 0 , 4 4 4 , 0 ] 0\bigr] 0 ]
y 2 = x 3 + 4 x {y}^2={x}^3+4{x} y 2 = x 3 + 4 x
64.1-b3
64.1-b
4 4 4
4 4 4
Q ( − 13 ) \Q(\sqrt{-13}) Q ( − 1 3 )
2 2 2
[ 0 , 1 ] [0, 1] [ 0 , 1 ]
64.1
2 6 2^{6} 2 6
2 18 2^{18} 2 1 8
1.82257 1.82257 1 . 8 2 2 5 7
( 2 , a + 1 ) (2,a+1) ( 2 , a + 1 )
1 1 1
Z / 2 Z \Z/2\Z Z / 2 Z
potential \textsf{potential} potential
− 16 -16 − 1 6
N ( U ( 1 ) ) N(\mathrm{U}(1)) N ( U ( 1 ) )
✓
✓
✓
2 2 2
2Cs
1 1 1
1 1 1
2.916255868 2.916255868 2 . 9 1 6 2 5 5 8 6 8
6.875185818 6.875185818 6 . 8 7 5 1 8 5 8 1 8
2.780407135
287496 287496 2 8 7 4 9 6
[ 0 \bigl[0 [ 0 , 0 0 0 , 0 0 0 , − 11 -11 − 1 1 , − 14 ] -14\bigr] − 1 4 ]
y 2 = x 3 − 11 x − 14 {y}^2={x}^3-11{x}-14 y 2 = x 3 − 1 1 x − 1 4
64.1-b4
64.1-b
4 4 4
4 4 4
Q ( − 13 ) \Q(\sqrt{-13}) Q ( − 1 3 )
2 2 2
[ 0 , 1 ] [0, 1] [ 0 , 1 ]
64.1
2 6 2^{6} 2 6
2 18 2^{18} 2 1 8
1.82257 1.82257 1 . 8 2 2 5 7
( 2 , a + 1 ) (2,a+1) ( 2 , a + 1 )
1 1 1
Z / 4 Z \Z/4\Z Z / 4 Z
potential \textsf{potential} potential
− 16 -16 − 1 6
N ( U ( 1 ) ) N(\mathrm{U}(1)) N ( U ( 1 ) )
✓
✓
✓
2 2 2
2Cs
1 1 1
1 1 1
11.66502347 11.66502347 1 1 . 6 6 5 0 2 3 4 7
6.875185818 6.875185818 6 . 8 7 5 1 8 5 8 1 8
2.780407135
287496 287496 2 8 7 4 9 6
[ 0 \bigl[0 [ 0 , 0 0 0 , 0 0 0 , − 11 -11 − 1 1 , 14 ] 14\bigr] 1 4 ]
y 2 = x 3 − 11 x + 14 {y}^2={x}^3-11{x}+14 y 2 = x 3 − 1 1 x + 1 4
64.1-c1
64.1-c
1 1 1
1 1 1
Q ( − 13 ) \Q(\sqrt{-13}) Q ( − 1 3 )
2 2 2
[ 0 , 1 ] [0, 1] [ 0 , 1 ]
64.1
2 6 2^{6} 2 6
2 6 2^{6} 2 6
1.82257 1.82257 1 . 8 2 2 5 7
( 2 , a + 1 ) (2,a+1) ( 2 , a + 1 )
0
t r i v i a l \mathsf{trivial} t r i v i a l
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
✓
3 3 3
3Cn
1 1 1
1 1 1
1 1 1
7.681576726 7.681576726 7 . 6 8 1 5 7 6 7 2 6
2.130486058
− 74088 -74088 − 7 4 0 8 8
[ a + 1 \bigl[a + 1 [ a + 1 , a a a , 0 0 0 , − 3 a − 5 -3 a - 5 − 3 a − 5 , a + 7 ] a + 7\bigr] a + 7 ]
y 2 + ( a + 1 ) x y = x 3 + a x 2 + ( − 3 a − 5 ) x + a + 7 {y}^2+\left(a+1\right){x}{y}={x}^3+a{x}^2+\left(-3a-5\right){x}+a+7 y 2 + ( a + 1 ) x y = x 3 + a x 2 + ( − 3 a − 5 ) x + a + 7
72.1-a1
72.1-a
6 6 6
8 8 8
Q ( − 13 ) \Q(\sqrt{-13}) Q ( − 1 3 )
2 2 2
[ 0 , 1 ] [0, 1] [ 0 , 1 ]
72.1
2 3 ⋅ 3 2 2^{3} \cdot 3^{2} 2 3 ⋅ 3 2
2 22 ⋅ 3 16 2^{22} \cdot 3^{16} 2 2 2 ⋅ 3 1 6
1.87704 1.87704 1 . 8 7 7 0 4
( 2 , a + 1 ) , ( 3 ) (2,a+1), (3) ( 2 , a + 1 ) , ( 3 )
1 1 1
Z / 8 Z \Z/8\Z Z / 8 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
✓
2 2 2
2Cs
1 1 1
2 4 2^{4} 2 4
11.45024622 11.45024622 1 1 . 4 5 0 2 4 6 2 2
1.817673508 1.817673508 1 . 8 1 7 6 7 3 5 0 8
2.886217342
207646 6561 \frac{207646}{6561} 6 5 6 1 2 0 7 6 4 6
[ 0 \bigl[0 [ 0 , 1 1 1 , 0 0 0 , 16 16 1 6 , 180 ] 180\bigr] 1 8 0 ]
y 2 = x 3 + x 2 + 16 x + 180 {y}^2={x}^3+{x}^2+16{x}+180 y 2 = x 3 + x 2 + 1 6 x + 1 8 0
72.1-a2
72.1-a
6 6 6
8 8 8
Q ( − 13 ) \Q(\sqrt{-13}) Q ( − 1 3 )
2 2 2
[ 0 , 1 ] [0, 1] [ 0 , 1 ]
72.1
2 3 ⋅ 3 2 2^{3} \cdot 3^{2} 2 3 ⋅ 3 2
2 8 ⋅ 3 2 2^{8} \cdot 3^{2} 2 8 ⋅ 3 2
1.87704 1.87704 1 . 8 7 7 0 4
( 2 , a + 1 ) , ( 3 ) (2,a+1), (3) ( 2 , a + 1 ) , ( 3 )
1 1 1
Z / 2 Z \Z/2\Z Z / 2 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
✓
2 2 2
2Cs
1 1 1
2 2 2
1.431280778 1.431280778 1 . 4 3 1 2 8 0 7 7 8
7.270694035 7.270694035 7 . 2 7 0 6 9 4 0 3 5
2.886217342
2048 3 \frac{2048}{3} 3 2 0 4 8
[ 0 \bigl[0 [ 0 , 1 1 1 , 0 0 0 , 1 1 1 , 0 ] 0\bigr] 0 ]
y 2 = x 3 + x 2 + x {y}^2={x}^3+{x}^2+{x} y 2 = x 3 + x 2 + x
72.1-a3
72.1-a
6 6 6
8 8 8
Q ( − 13 ) \Q(\sqrt{-13}) Q ( − 1 3 )
2 2 2
[ 0 , 1 ] [0, 1] [ 0 , 1 ]
72.1
2 3 ⋅ 3 2 2^{3} \cdot 3^{2} 2 3 ⋅ 3 2
2 16 ⋅ 3 4 2^{16} \cdot 3^{4} 2 1 6 ⋅ 3 4
1.87704 1.87704 1 . 8 7 7 0 4
( 2 , a + 1 ) , ( 3 ) (2,a+1), (3) ( 2 , a + 1 ) , ( 3 )
1 1 1
Z / 2 Z ⊕ Z / 2 Z \Z/2\Z\oplus\Z/2\Z Z / 2 Z ⊕ Z / 2 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
✓
2 2 2
2Cs
1 1 1
2 2 2^{2} 2 2
2.862561557 2.862561557 2 . 8 6 2 5 6 1 5 5 7
7.270694035 7.270694035 7 . 2 7 0 6 9 4 0 3 5
2.886217342
35152 9 \frac{35152}{9} 9 3 5 1 5 2
[ 0 \bigl[0 [ 0 , 1 1 1 , 0 0 0 , − 4 -4 − 4 , − 4 ] -4\bigr] − 4 ]
y 2 = x 3 + x 2 − 4 x − 4 {y}^2={x}^3+{x}^2-4{x}-4 y 2 = x 3 + x 2 − 4 x − 4
72.1-a4
72.1-a
6 6 6
8 8 8
Q ( − 13 ) \Q(\sqrt{-13}) Q ( − 1 3 )
2 2 2
[ 0 , 1 ] [0, 1] [ 0 , 1 ]
72.1
2 3 ⋅ 3 2 2^{3} \cdot 3^{2} 2 3 ⋅ 3 2
2 20 ⋅ 3 8 2^{20} \cdot 3^{8} 2 2 0 ⋅ 3 8
1.87704 1.87704 1 . 8 7 7 0 4
( 2 , a + 1 ) , ( 3 ) (2,a+1), (3) ( 2 , a + 1 ) , ( 3 )
1 1 1
Z / 2 Z ⊕ Z / 4 Z \Z/2\Z\oplus\Z/4\Z Z / 2 Z ⊕ Z / 4 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
✓
2 2 2
2Cs
1 1 1
2 4 2^{4} 2 4
5.725123114 5.725123114 5 . 7 2 5 1 2 3 1 1 4
3.635347017 3.635347017 3 . 6 3 5 3 4 7 0 1 7
2.886217342
1556068 81 \frac{1556068}{81} 8 1 1 5 5 6 0 6 8
[ 0 \bigl[0 [ 0 , 1 1 1 , 0 0 0 , − 24 -24 − 2 4 , 36 ] 36\bigr] 3 6 ]
y 2 = x 3 + x 2 − 24 x + 36 {y}^2={x}^3+{x}^2-24{x}+36 y 2 = x 3 + x 2 − 2 4 x + 3 6
72.1-a5
72.1-a
6 6 6
8 8 8
Q ( − 13 ) \Q(\sqrt{-13}) Q ( − 1 3 )
2 2 2
[ 0 , 1 ] [0, 1] [ 0 , 1 ]
72.1
2 3 ⋅ 3 2 2^{3} \cdot 3^{2} 2 3 ⋅ 3 2
2 20 ⋅ 3 2 2^{20} \cdot 3^{2} 2 2 0 ⋅ 3 2
1.87704 1.87704 1 . 8 7 7 0 4
( 2 , a + 1 ) , ( 3 ) (2,a+1), (3) ( 2 , a + 1 ) , ( 3 )
1 1 1
Z / 2 Z \Z/2\Z Z / 2 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
✓
2 2 2
2Cs
1 1 1
2 2 2^{2} 2 2
1.431280778 1.431280778 1 . 4 3 1 2 8 0 7 7 8
3.635347017 3.635347017 3 . 6 3 5 3 4 7 0 1 7
2.886217342
28756228 3 \frac{28756228}{3} 3 2 8 7 5 6 2 2 8
[ 0 \bigl[0 [ 0 , 1 1 1 , 0 0 0 , − 64 -64 − 6 4 , − 220 ] -220\bigr] − 2 2 0 ]
y 2 = x 3 + x 2 − 64 x − 220 {y}^2={x}^3+{x}^2-64{x}-220 y 2 = x 3 + x 2 − 6 4 x − 2 2 0
72.1-a6
72.1-a
6 6 6
8 8 8
Q ( − 13 ) \Q(\sqrt{-13}) Q ( − 1 3 )
2 2 2
[ 0 , 1 ] [0, 1] [ 0 , 1 ]
72.1
2 3 ⋅ 3 2 2^{3} \cdot 3^{2} 2 3 ⋅ 3 2
2 22 ⋅ 3 4 2^{22} \cdot 3^{4} 2 2 2 ⋅ 3 4
1.87704 1.87704 1 . 8 7 7 0 4
( 2 , a + 1 ) , ( 3 ) (2,a+1), (3) ( 2 , a + 1 ) , ( 3 )
1 1 1
Z / 4 Z \Z/4\Z Z / 4 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
✓
2 2 2
2Cs
1 1 1
2 2 2^{2} 2 2
11.45024622 11.45024622 1 1 . 4 5 0 2 4 6 2 2
1.817673508 1.817673508 1 . 8 1 7 6 7 3 5 0 8
2.886217342
3065617154 9 \frac{3065617154}{9} 9 3 0 6 5 6 1 7 1 5 4
[ 0 \bigl[0 [ 0 , 1 1 1 , 0 0 0 , − 384 -384 − 3 8 4 , 2772 ] 2772\bigr] 2 7 7 2 ]
y 2 = x 3 + x 2 − 384 x + 2772 {y}^2={x}^3+{x}^2-384{x}+2772 y 2 = x 3 + x 2 − 3 8 4 x + 2 7 7 2
72.1-b1
72.1-b
6 6 6
8 8 8
Q ( − 13 ) \Q(\sqrt{-13}) Q ( − 1 3 )
2 2 2
[ 0 , 1 ] [0, 1] [ 0 , 1 ]
72.1
2 3 ⋅ 3 2 2^{3} \cdot 3^{2} 2 3 ⋅ 3 2
2 22 ⋅ 3 16 2^{22} \cdot 3^{16} 2 2 2 ⋅ 3 1 6
1.87704 1.87704 1 . 8 7 7 0 4
( 2 , a + 1 ) , ( 3 ) (2,a+1), (3) ( 2 , a + 1 ) , ( 3 )
0
Z / 2 Z \Z/2\Z Z / 2 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
✓
2 2 2
2Cs
1 1 1
2 4 2^{4} 2 4
1 1 1
1.817673508 1.817673508 1 . 8 1 7 6 7 3 5 0 8
2.016527704
207646 6561 \frac{207646}{6561} 6 5 6 1 2 0 7 6 4 6
[ 0 \bigl[0 [ 0 , − 1 -1 − 1 , 0 0 0 , 16 16 1 6 , − 180 ] -180\bigr] − 1 8 0 ]
y 2 = x 3 − x 2 + 16 x − 180 {y}^2={x}^3-{x}^2+16{x}-180 y 2 = x 3 − x 2 + 1 6 x − 1 8 0
72.1-b2
72.1-b
6 6 6
8 8 8
Q ( − 13 ) \Q(\sqrt{-13}) Q ( − 1 3 )
2 2 2
[ 0 , 1 ] [0, 1] [ 0 , 1 ]
72.1
2 3 ⋅ 3 2 2^{3} \cdot 3^{2} 2 3 ⋅ 3 2
2 8 ⋅ 3 2 2^{8} \cdot 3^{2} 2 8 ⋅ 3 2
1.87704 1.87704 1 . 8 7 7 0 4
( 2 , a + 1 ) , ( 3 ) (2,a+1), (3) ( 2 , a + 1 ) , ( 3 )
0
Z / 4 Z \Z/4\Z Z / 4 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
✓
2 2 2
2Cs
4 4 4
2 2 2^{2} 2 2
1 1 1
7.270694035 7.270694035 7 . 2 7 0 6 9 4 0 3 5
2.016527704
2048 3 \frac{2048}{3} 3 2 0 4 8
[ 0 \bigl[0 [ 0 , − 1 -1 − 1 , 0 0 0 , 1 1 1 , 0 ] 0\bigr] 0 ]
y 2 = x 3 − x 2 + x {y}^2={x}^3-{x}^2+{x} y 2 = x 3 − x 2 + x
72.1-b3
72.1-b
6 6 6
8 8 8
Q ( − 13 ) \Q(\sqrt{-13}) Q ( − 1 3 )
2 2 2
[ 0 , 1 ] [0, 1] [ 0 , 1 ]
72.1
2 3 ⋅ 3 2 2^{3} \cdot 3^{2} 2 3 ⋅ 3 2
2 16 ⋅ 3 4 2^{16} \cdot 3^{4} 2 1 6 ⋅ 3 4
1.87704 1.87704 1 . 8 7 7 0 4
( 2 , a + 1 ) , ( 3 ) (2,a+1), (3) ( 2 , a + 1 ) , ( 3 )
0
Z / 2 Z ⊕ Z / 4 Z \Z/2\Z\oplus\Z/4\Z Z / 2 Z ⊕ Z / 4 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
✓
2 2 2
2Cs
16 16 1 6
2 2 2^{2} 2 2
1 1 1
7.270694035 7.270694035 7 . 2 7 0 6 9 4 0 3 5
2.016527704
35152 9 \frac{35152}{9} 9 3 5 1 5 2
[ 0 \bigl[0 [ 0 , − 1 -1 − 1 , 0 0 0 , − 4 -4 − 4 , 4 ] 4\bigr] 4 ]
y 2 = x 3 − x 2 − 4 x + 4 {y}^2={x}^3-{x}^2-4{x}+4 y 2 = x 3 − x 2 − 4 x + 4
72.1-b4
72.1-b
6 6 6
8 8 8
Q ( − 13 ) \Q(\sqrt{-13}) Q ( − 1 3 )
2 2 2
[ 0 , 1 ] [0, 1] [ 0 , 1 ]
72.1
2 3 ⋅ 3 2 2^{3} \cdot 3^{2} 2 3 ⋅ 3 2
2 20 ⋅ 3 8 2^{20} \cdot 3^{8} 2 2 0 ⋅ 3 8
1.87704 1.87704 1 . 8 7 7 0 4
( 2 , a + 1 ) , ( 3 ) (2,a+1), (3) ( 2 , a + 1 ) , ( 3 )
0
Z / 2 Z ⊕ Z / 2 Z \Z/2\Z\oplus\Z/2\Z Z / 2 Z ⊕ Z / 2 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
✓
2 2 2
2Cs
4 4 4
2 3 2^{3} 2 3
1 1 1
3.635347017 3.635347017 3 . 6 3 5 3 4 7 0 1 7
2.016527704
1556068 81 \frac{1556068}{81} 8 1 1 5 5 6 0 6 8
[ 0 \bigl[0 [ 0 , − 1 -1 − 1 , 0 0 0 , − 24 -24 − 2 4 , − 36 ] -36\bigr] − 3 6 ]
y 2 = x 3 − x 2 − 24 x − 36 {y}^2={x}^3-{x}^2-24{x}-36 y 2 = x 3 − x 2 − 2 4 x − 3 6
72.1-b5
72.1-b
6 6 6
8 8 8
Q ( − 13 ) \Q(\sqrt{-13}) Q ( − 1 3 )
2 2 2
[ 0 , 1 ] [0, 1] [ 0 , 1 ]
72.1
2 3 ⋅ 3 2 2^{3} \cdot 3^{2} 2 3 ⋅ 3 2
2 20 ⋅ 3 2 2^{20} \cdot 3^{2} 2 2 0 ⋅ 3 2
1.87704 1.87704 1 . 8 7 7 0 4
( 2 , a + 1 ) , ( 3 ) (2,a+1), (3) ( 2 , a + 1 ) , ( 3 )
0
Z / 4 Z \Z/4\Z Z / 4 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
✓
2 2 2
2Cs
16 16 1 6
2 2 2
1 1 1
3.635347017 3.635347017 3 . 6 3 5 3 4 7 0 1 7
2.016527704
28756228 3 \frac{28756228}{3} 3 2 8 7 5 6 2 2 8
[ 0 \bigl[0 [ 0 , − 1 -1 − 1 , 0 0 0 , − 64 -64 − 6 4 , 220 ] 220\bigr] 2 2 0 ]
y 2 = x 3 − x 2 − 64 x + 220 {y}^2={x}^3-{x}^2-64{x}+220 y 2 = x 3 − x 2 − 6 4 x + 2 2 0
72.1-b6
72.1-b
6 6 6
8 8 8
Q ( − 13 ) \Q(\sqrt{-13}) Q ( − 1 3 )
2 2 2
[ 0 , 1 ] [0, 1] [ 0 , 1 ]
72.1
2 3 ⋅ 3 2 2^{3} \cdot 3^{2} 2 3 ⋅ 3 2
2 22 ⋅ 3 4 2^{22} \cdot 3^{4} 2 2 2 ⋅ 3 4
1.87704 1.87704 1 . 8 7 7 0 4
( 2 , a + 1 ) , ( 3 ) (2,a+1), (3) ( 2 , a + 1 ) , ( 3 )
0
Z / 2 Z \Z/2\Z Z / 2 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
✓
2 2 2
2Cs
4 4 4
2 2 2^{2} 2 2
1 1 1
1.817673508 1.817673508 1 . 8 1 7 6 7 3 5 0 8
2.016527704
3065617154 9 \frac{3065617154}{9} 9 3 0 6 5 6 1 7 1 5 4
[ 0 \bigl[0 [ 0 , − 1 -1 − 1 , 0 0 0 , − 384 -384 − 3 8 4 , − 2772 ] -2772\bigr] − 2 7 7 2 ]
y 2 = x 3 − x 2 − 384 x − 2772 {y}^2={x}^3-{x}^2-384{x}-2772 y 2 = x 3 − x 2 − 3 8 4 x − 2 7 7 2
98.2-a1
98.2-a
6 6 6
18 18 1 8
Q ( − 13 ) \Q(\sqrt{-13}) Q ( − 1 3 )
2 2 2
[ 0 , 1 ] [0, 1] [ 0 , 1 ]
98.2
2 ⋅ 7 2 2 \cdot 7^{2} 2 ⋅ 7 2
2 36 ⋅ 7 2 2^{36} \cdot 7^{2} 2 3 6 ⋅ 7 2
2.02743 2.02743 2 . 0 2 7 4 3
( 2 , a + 1 ) , ( 7 , a + 1 ) , ( 7 , a + 6 ) (2,a+1), (7,a+1), (7,a+6) ( 2 , a + 1 ) , ( 7 , a + 1 ) , ( 7 , a + 6 )
1 1 1
Z / 2 Z \Z/2\Z Z / 2 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
✓
✓
2 , 3 2, 3 2 , 3
2B , 3Cs.1.1
1 1 1
2 2 2
10.40550172 10.40550172 1 0 . 4 0 5 5 0 1 7 2
0.875417135 0.875417135 0 . 8 7 5 4 1 7 1 3 5
2.526424896
− 548347731625 1835008 -\frac{548347731625}{1835008} − 1 8 3 5 0 0 8 5 4 8 3 4 7 7 3 1 6 2 5
[ 1 \bigl[1 [ 1 , 0 0 0 , 1 1 1 , − 171 -171 − 1 7 1 , − 874 ] -874\bigr] − 8 7 4 ]
y 2 + x y + y = x 3 − 171 x − 874 {y}^2+{x}{y}+{y}={x}^3-171{x}-874 y 2 + x y + y = x 3 − 1 7 1 x − 8 7 4
98.2-a2
98.2-a
6 6 6
18 18 1 8
Q ( − 13 ) \Q(\sqrt{-13}) Q ( − 1 3 )
2 2 2
[ 0 , 1 ] [0, 1] [ 0 , 1 ]
98.2
2 ⋅ 7 2 2 \cdot 7^{2} 2 ⋅ 7 2
2 4 ⋅ 7 2 2^{4} \cdot 7^{2} 2 4 ⋅ 7 2
2.02743 2.02743 2 . 0 2 7 4 3
( 2 , a + 1 ) , ( 7 , a + 1 ) , ( 7 , a + 6 ) (2,a+1), (7,a+1), (7,a+6) ( 2 , a + 1 ) , ( 7 , a + 1 ) , ( 7 , a + 6 )
1 1 1
Z / 6 Z \Z/6\Z Z / 6 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
✓
✓
2 , 3 2, 3 2 , 3
2B , 3Cs.1.1
1 1 1
2 2 2
10.40550172 10.40550172 1 0 . 4 0 5 5 0 1 7 2
7.878754216 7.878754216 7 . 8 7 8 7 5 4 2 1 6
2.526424896
− 15625 28 -\frac{15625}{28} − 2 8 1 5 6 2 5
[ 1 \bigl[1 [ 1 , 0 0 0 , 1 1 1 , − 1 -1 − 1 , 0 ] 0\bigr] 0 ]
y 2 + x y + y = x 3 − x {y}^2+{x}{y}+{y}={x}^3-{x} y 2 + x y + y = x 3 − x
98.2-a3
98.2-a
6 6 6
18 18 1 8
Q ( − 13 ) \Q(\sqrt{-13}) Q ( − 1 3 )
2 2 2
[ 0 , 1 ] [0, 1] [ 0 , 1 ]
98.2
2 ⋅ 7 2 2 \cdot 7^{2} 2 ⋅ 7 2
2 12 ⋅ 7 6 2^{12} \cdot 7^{6} 2 1 2 ⋅ 7 6
2.02743 2.02743 2 . 0 2 7 4 3
( 2 , a + 1 ) , ( 7 , a + 1 ) , ( 7 , a + 6 ) (2,a+1), (7,a+1), (7,a+6) ( 2 , a + 1 ) , ( 7 , a + 1 ) , ( 7 , a + 6 )
1 1 1
Z / 6 Z \Z/6\Z Z / 6 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
✓
✓
2 , 3 2, 3 2 , 3
2B , 3Cs.1.1
1 1 1
2 ⋅ 3 2 2 \cdot 3^{2} 2 ⋅ 3 2
3.468500574 3.468500574 3 . 4 6 8 5 0 0 5 7 4
2.626251405 2.626251405 2 . 6 2 6 2 5 1 4 0 5
2.526424896
9938375 21952 \frac{9938375}{21952} 2 1 9 5 2 9 9 3 8 3 7 5
[ 1 \bigl[1 [ 1 , 0 0 0 , 1 1 1 , 4 4 4 , − 6 ] -6\bigr] − 6 ]
y 2 + x y + y = x 3 + 4 x − 6 {y}^2+{x}{y}+{y}={x}^3+4{x}-6 y 2 + x y + y = x 3 + 4 x − 6
98.2-a4
98.2-a
6 6 6
18 18 1 8
Q ( − 13 ) \Q(\sqrt{-13}) Q ( − 1 3 )
2 2 2
[ 0 , 1 ] [0, 1] [ 0 , 1 ]
98.2
2 ⋅ 7 2 2 \cdot 7^{2} 2 ⋅ 7 2
2 6 ⋅ 7 12 2^{6} \cdot 7^{12} 2 6 ⋅ 7 1 2
2.02743 2.02743 2 . 0 2 7 4 3
( 2 , a + 1 ) , ( 7 , a + 1 ) , ( 7 , a + 6 ) (2,a+1), (7,a+1), (7,a+6) ( 2 , a + 1 ) , ( 7 , a + 1 ) , ( 7 , a + 6 )
1 1 1
Z / 6 Z \Z/6\Z Z / 6 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
✓
✓
2 , 3 2, 3 2 , 3
2B , 3Cs.1.1
1 1 1
2 3 ⋅ 3 2 2^{3} \cdot 3^{2} 2 3 ⋅ 3 2
1.734250287 1.734250287 1 . 7 3 4 2 5 0 2 8 7
1.313125702 1.313125702 1 . 3 1 3 1 2 5 7 0 2
2.526424896
4956477625 941192 \frac{4956477625}{941192} 9 4 1 1 9 2 4 9 5 6 4 7 7 6 2 5
[ 1 \bigl[1 [ 1 , 0 0 0 , 1 1 1 , − 36 -36 − 3 6 , − 70 ] -70\bigr] − 7 0 ]
y 2 + x y + y = x 3 − 36 x − 70 {y}^2+{x}{y}+{y}={x}^3-36{x}-70 y 2 + x y + y = x 3 − 3 6 x − 7 0
98.2-a5
98.2-a
6 6 6
18 18 1 8
Q ( − 13 ) \Q(\sqrt{-13}) Q ( − 1 3 )
2 2 2
[ 0 , 1 ] [0, 1] [ 0 , 1 ]
98.2
2 ⋅ 7 2 2 \cdot 7^{2} 2 ⋅ 7 2
2 2 ⋅ 7 4 2^{2} \cdot 7^{4} 2 2 ⋅ 7 4
2.02743 2.02743 2 . 0 2 7 4 3
( 2 , a + 1 ) , ( 7 , a + 1 ) , ( 7 , a + 6 ) (2,a+1), (7,a+1), (7,a+6) ( 2 , a + 1 ) , ( 7 , a + 1 ) , ( 7 , a + 6 )
1 1 1
Z / 6 Z \Z/6\Z Z / 6 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
✓
✓
2 , 3 2, 3 2 , 3
2B , 3Cs.1.1
1 1 1
2 3 2^{3} 2 3
5.202750861 5.202750861 5 . 2 0 2 7 5 0 8 6 1
3.939377108 3.939377108 3 . 9 3 9 3 7 7 1 0 8
2.526424896
128787625 98 \frac{128787625}{98} 9 8 1 2 8 7 8 7 6 2 5
[ 1 \bigl[1 [ 1 , 0 0 0 , 1 1 1 , − 11 -11 − 1 1 , 12 ] 12\bigr] 1 2 ]
y 2 + x y + y = x 3 − 11 x + 12 {y}^2+{x}{y}+{y}={x}^3-11{x}+12 y 2 + x y + y = x 3 − 1 1 x + 1 2
98.2-a6
98.2-a
6 6 6
18 18 1 8
Q ( − 13 ) \Q(\sqrt{-13}) Q ( − 1 3 )
2 2 2
[ 0 , 1 ] [0, 1] [ 0 , 1 ]
98.2
2 ⋅ 7 2 2 \cdot 7^{2} 2 ⋅ 7 2
2 18 ⋅ 7 4 2^{18} \cdot 7^{4} 2 1 8 ⋅ 7 4
2.02743 2.02743 2 . 0 2 7 4 3
( 2 , a + 1 ) , ( 7 , a + 1 ) , ( 7 , a + 6 ) (2,a+1), (7,a+1), (7,a+6) ( 2 , a + 1 ) , ( 7 , a + 1 ) , ( 7 , a + 6 )
1 1 1
Z / 2 Z \Z/2\Z Z / 2 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
✓
✓
2 , 3 2, 3 2 , 3
2B , 3Cs.1.1
1 1 1
2 3 2^{3} 2 3
5.202750861 5.202750861 5 . 2 0 2 7 5 0 8 6 1
0.437708567 0.437708567 0 . 4 3 7 7 0 8 5 6 7
2.526424896
2251439055699625 25088 \frac{2251439055699625}{25088} 2 5 0 8 8 2 2 5 1 4 3 9 0 5 5 6 9 9 6 2 5
[ 1 \bigl[1 [ 1 , 0 0 0 , 1 1 1 , − 2731 -2731 − 2 7 3 1 , − 55146 ] -55146\bigr] − 5 5 1 4 6 ]
y 2 + x y + y = x 3 − 2731 x − 55146 {y}^2+{x}{y}+{y}={x}^3-2731{x}-55146 y 2 + x y + y = x 3 − 2 7 3 1 x − 5 5 1 4 6