Learn more

Refine search


Results (1-50 of 664 matches)

Next   displayed columns for results
Label Class Base field Conductor norm Rank Torsion CM Sato-Tate Regulator Period Leading coeff j-invariant Weierstrass coefficients Weierstrass equation
16.1-a1 16.1-a \(\Q(\sqrt{-13}) \) \( 2^{4} \) $1$ $\mathsf{trivial}$ $\mathrm{SU}(2)$ $1.688026059$ $0.987129325$ 1.848593902 \( -\frac{1680914269}{32768} \) \( \bigl[a + 1\) , \( -a\) , \( 0\) , \( a + 101\) , \( -124 a - 99\bigr] \) ${y}^2+\left(a+1\right){x}{y}={x}^3-a{x}^2+\left(a+101\right){x}-124a-99$
16.1-a2 16.1-a \(\Q(\sqrt{-13}) \) \( 2^{4} \) $1$ $\mathsf{trivial}$ $\mathrm{SU}(2)$ $0.337605211$ $4.935646628$ 1.848593902 \( \frac{1331}{8} \) \( \bigl[a + 1\) , \( -a\) , \( 0\) , \( a + 1\) , \( 1\bigr] \) ${y}^2+\left(a+1\right){x}{y}={x}^3-a{x}^2+\left(a+1\right){x}+1$
16.1-b1 16.1-b \(\Q(\sqrt{-13}) \) \( 2^{4} \) $1$ $\mathsf{trivial}$ $\mathrm{SU}(2)$ $1.688026059$ $0.987129325$ 1.848593902 \( -\frac{1680914269}{32768} \) \( \bigl[a + 1\) , \( 0\) , \( 0\) , \( -a + 101\) , \( 124 a - 99\bigr] \) ${y}^2+\left(a+1\right){x}{y}={x}^3+\left(-a+101\right){x}+124a-99$
16.1-b2 16.1-b \(\Q(\sqrt{-13}) \) \( 2^{4} \) $1$ $\mathsf{trivial}$ $\mathrm{SU}(2)$ $0.337605211$ $4.935646628$ 1.848593902 \( \frac{1331}{8} \) \( \bigl[a + 1\) , \( 0\) , \( 0\) , \( -a + 1\) , \( 1\bigr] \) ${y}^2+\left(a+1\right){x}{y}={x}^3+\left(-a+1\right){x}+1$
26.1-a1 26.1-a \(\Q(\sqrt{-13}) \) \( 2 \cdot 13 \) 0 $\mathsf{trivial}$ $\mathrm{SU}(2)$ $1$ $0.896934130$ 0.995059076 \( -\frac{10730978619193}{6656} \) \( \bigl[1\) , \( 0\) , \( 1\) , \( -460\) , \( -3830\bigr] \) ${y}^2+{x}{y}+{y}={x}^3-460{x}-3830$
26.1-a2 26.1-a \(\Q(\sqrt{-13}) \) \( 2 \cdot 13 \) 0 $\Z/3\Z$ $\mathrm{SU}(2)$ $1$ $2.690802392$ 0.995059076 \( -\frac{10218313}{17576} \) \( \bigl[1\) , \( 0\) , \( 1\) , \( -5\) , \( -8\bigr] \) ${y}^2+{x}{y}+{y}={x}^3-5{x}-8$
26.1-a3 26.1-a \(\Q(\sqrt{-13}) \) \( 2 \cdot 13 \) 0 $\Z/3\Z$ $\mathrm{SU}(2)$ $1$ $8.072407178$ 0.995059076 \( \frac{12167}{26} \) \( \bigl[1\) , \( 0\) , \( 1\) , \( 0\) , \( 0\bigr] \) ${y}^2+{x}{y}+{y}={x}^3$
26.1-b1 26.1-b \(\Q(\sqrt{-13}) \) \( 2 \cdot 13 \) $1$ $\mathsf{trivial}$ $\mathrm{SU}(2)$ $1.383448027$ $0.560128502$ 1.719367970 \( -\frac{1064019559329}{125497034} \) \( \bigl[a\) , \( 1\) , \( 0\) , \( -211\) , \( 1469\bigr] \) ${y}^2+a{x}{y}={x}^3+{x}^2-211{x}+1469$
26.1-b2 26.1-b \(\Q(\sqrt{-13}) \) \( 2 \cdot 13 \) $1$ $\mathsf{trivial}$ $\mathrm{SU}(2)$ $0.197635432$ $3.920899519$ 1.719367970 \( -\frac{2146689}{1664} \) \( \bigl[a\) , \( 1\) , \( 0\) , \( -1\) , \( -1\bigr] \) ${y}^2+a{x}{y}={x}^3+{x}^2-{x}-1$
26.1-c1 26.1-c \(\Q(\sqrt{-13}) \) \( 2 \cdot 13 \) $1$ $\mathsf{trivial}$ $\mathrm{SU}(2)$ $0.166288191$ $0.896934130$ 2.978398339 \( -\frac{10730978619193}{6656} \) \( \bigl[a\) , \( 0\) , \( 0\) , \( -456\) , \( 4288\bigr] \) ${y}^2+a{x}{y}={x}^3-456{x}+4288$
26.1-c2 26.1-c \(\Q(\sqrt{-13}) \) \( 2 \cdot 13 \) $1$ $\mathsf{trivial}$ $\mathrm{SU}(2)$ $0.055429397$ $2.690802392$ 2.978398339 \( -\frac{10218313}{17576} \) \( \bigl[a\) , \( 0\) , \( 0\) , \( -1\) , \( 11\bigr] \) ${y}^2+a{x}{y}={x}^3-{x}+11$
26.1-c3 26.1-c \(\Q(\sqrt{-13}) \) \( 2 \cdot 13 \) $1$ $\mathsf{trivial}$ $\mathrm{SU}(2)$ $0.166288191$ $8.072407178$ 2.978398339 \( \frac{12167}{26} \) \( \bigl[a\) , \( 0\) , \( 0\) , \( 4\) , \( -2\bigr] \) ${y}^2+a{x}{y}={x}^3+4{x}-2$
26.1-d1 26.1-d \(\Q(\sqrt{-13}) \) \( 2 \cdot 13 \) 0 $\mathsf{trivial}$ $\mathrm{SU}(2)$ $1$ $0.560128502$ 2.485627123 \( -\frac{1064019559329}{125497034} \) \( \bigl[1\) , \( -1\) , \( 1\) , \( -213\) , \( -1257\bigr] \) ${y}^2+{x}{y}+{y}={x}^3-{x}^2-213{x}-1257$
26.1-d2 26.1-d \(\Q(\sqrt{-13}) \) \( 2 \cdot 13 \) 0 $\Z/7\Z$ $\mathrm{SU}(2)$ $1$ $3.920899519$ 2.485627123 \( -\frac{2146689}{1664} \) \( \bigl[1\) , \( -1\) , \( 1\) , \( -3\) , \( 3\bigr] \) ${y}^2+{x}{y}+{y}={x}^3-{x}^2-3{x}+3$
49.1-a1 49.1-a \(\Q(\sqrt{-13}) \) \( 7^{2} \) 0 $\mathsf{trivial}$ $\mathrm{SU}(2)$ $1$ $4.561503326$ 1.265133395 \( -3703 a + 11250 \) \( \bigl[a\) , \( a + 1\) , \( a + 1\) , \( -a + 5\) , \( -a - 2\bigr] \) ${y}^2+a{x}{y}+\left(a+1\right){y}={x}^3+\left(a+1\right){x}^2+\left(-a+5\right){x}-a-2$
49.1-a2 49.1-a \(\Q(\sqrt{-13}) \) \( 7^{2} \) 0 $\mathsf{trivial}$ $\mathrm{SU}(2)$ $1$ $4.561503326$ 1.265133395 \( 3703 a + 11250 \) \( \bigl[a + 1\) , \( a + 1\) , \( a + 1\) , \( -6 a - 13\) , \( a + 43\bigr] \) ${y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^3+\left(a+1\right){x}^2+\left(-6a-13\right){x}+a+43$
49.1-b1 49.1-b \(\Q(\sqrt{-13}) \) \( 7^{2} \) 0 $\mathsf{trivial}$ $\mathrm{SU}(2)$ $1$ $4.561503326$ 1.265133395 \( -3703 a + 11250 \) \( \bigl[1\) , \( -a - 1\) , \( a\) , \( a - 3\) , \( 11\bigr] \) ${y}^2+{x}{y}+a{y}={x}^3+\left(-a-1\right){x}^2+\left(a-3\right){x}+11$
49.1-b2 49.1-b \(\Q(\sqrt{-13}) \) \( 7^{2} \) 0 $\mathsf{trivial}$ $\mathrm{SU}(2)$ $1$ $4.561503326$ 1.265133395 \( 3703 a + 11250 \) \( \bigl[a + 1\) , \( a - 1\) , \( 0\) , \( -7 a - 15\) , \( -6 a + 37\bigr] \) ${y}^2+\left(a+1\right){x}{y}={x}^3+\left(a-1\right){x}^2+\left(-7a-15\right){x}-6a+37$
49.3-a1 49.3-a \(\Q(\sqrt{-13}) \) \( 7^{2} \) 0 $\mathsf{trivial}$ $\mathrm{SU}(2)$ $1$ $4.561503326$ 1.265133395 \( -3703 a + 11250 \) \( \bigl[a + 1\) , \( a + 1\) , \( 0\) , \( a - 19\) , \( -14 a + 1\bigr] \) ${y}^2+\left(a+1\right){x}{y}={x}^3+\left(a+1\right){x}^2+\left(a-19\right){x}-14a+1$
49.3-a2 49.3-a \(\Q(\sqrt{-13}) \) \( 7^{2} \) 0 $\mathsf{trivial}$ $\mathrm{SU}(2)$ $1$ $4.561503326$ 1.265133395 \( 3703 a + 11250 \) \( \bigl[a\) , \( -a + 1\) , \( a + 1\) , \( 5\) , \( -2\bigr] \) ${y}^2+a{x}{y}+\left(a+1\right){y}={x}^3+\left(-a+1\right){x}^2+5{x}-2$
49.3-b1 49.3-b \(\Q(\sqrt{-13}) \) \( 7^{2} \) 0 $\mathsf{trivial}$ $\mathrm{SU}(2)$ $1$ $4.561503326$ 1.265133395 \( -3703 a + 11250 \) \( \bigl[a + 1\) , \( a - 1\) , \( a + 1\) , \( -2 a - 9\) , \( -3 a + 1\bigr] \) ${y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^3+\left(a-1\right){x}^2+\left(-2a-9\right){x}-3a+1$
49.3-b2 49.3-b \(\Q(\sqrt{-13}) \) \( 7^{2} \) 0 $\mathsf{trivial}$ $\mathrm{SU}(2)$ $1$ $4.561503326$ 1.265133395 \( 3703 a + 11250 \) \( \bigl[1\) , \( a - 1\) , \( a\) , \( -2 a - 3\) , \( 11\bigr] \) ${y}^2+{x}{y}+a{y}={x}^3+\left(a-1\right){x}^2+\left(-2a-3\right){x}+11$
52.1-a1 52.1-a \(\Q(\sqrt{-13}) \) \( 2^{2} \cdot 13 \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $4.738620278$ 0.657128399 \( \frac{432}{169} \) \( \bigl[0\) , \( 0\) , \( 0\) , \( 1\) , \( -10\bigr] \) ${y}^2={x}^3+{x}-10$
52.1-a2 52.1-a \(\Q(\sqrt{-13}) \) \( 2^{2} \cdot 13 \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $4.738620278$ 0.657128399 \( \frac{442368}{13} \) \( \bigl[0\) , \( 0\) , \( 0\) , \( -4\) , \( -3\bigr] \) ${y}^2={x}^3-4{x}-3$
52.1-b1 52.1-b \(\Q(\sqrt{-13}) \) \( 2^{2} \cdot 13 \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $4.738620278$ 1.971385198 \( \frac{432}{169} \) \( \bigl[0\) , \( 0\) , \( 0\) , \( 1\) , \( 10\bigr] \) ${y}^2={x}^3+{x}+10$
52.1-b2 52.1-b \(\Q(\sqrt{-13}) \) \( 2^{2} \cdot 13 \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $4.738620278$ 1.971385198 \( \frac{442368}{13} \) \( \bigl[0\) , \( 0\) , \( 0\) , \( -4\) , \( 3\bigr] \) ${y}^2={x}^3-4{x}+3$
64.1-a1 64.1-a \(\Q(\sqrt{-13}) \) \( 2^{6} \) 0 $\mathsf{trivial}$ $\mathrm{SU}(2)$ $1$ $7.681576726$ 2.130486058 \( -74088 \) \( \bigl[a + 1\) , \( a\) , \( a + 1\) , \( -4 a + 1\) , \( 10\bigr] \) ${y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^3+a{x}^2+\left(-4a+1\right){x}+10$
64.1-b1 64.1-b \(\Q(\sqrt{-13}) \) \( 2^{6} \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $-4$ $N(\mathrm{U}(1))$ $5.832511736$ $6.875185818$ 2.780407135 \( 1728 \) \( \bigl[0\) , \( 0\) , \( 0\) , \( -1\) , \( 0\bigr] \) ${y}^2={x}^3-{x}$
64.1-b2 64.1-b \(\Q(\sqrt{-13}) \) \( 2^{6} \) $1$ $\Z/4\Z$ $-4$ $N(\mathrm{U}(1))$ $2.916255868$ $6.875185818$ 2.780407135 \( 1728 \) \( \bigl[0\) , \( 0\) , \( 0\) , \( 4\) , \( 0\bigr] \) ${y}^2={x}^3+4{x}$
64.1-b3 64.1-b \(\Q(\sqrt{-13}) \) \( 2^{6} \) $1$ $\Z/2\Z$ $-16$ $N(\mathrm{U}(1))$ $2.916255868$ $6.875185818$ 2.780407135 \( 287496 \) \( \bigl[0\) , \( 0\) , \( 0\) , \( -11\) , \( -14\bigr] \) ${y}^2={x}^3-11{x}-14$
64.1-b4 64.1-b \(\Q(\sqrt{-13}) \) \( 2^{6} \) $1$ $\Z/4\Z$ $-16$ $N(\mathrm{U}(1))$ $11.66502347$ $6.875185818$ 2.780407135 \( 287496 \) \( \bigl[0\) , \( 0\) , \( 0\) , \( -11\) , \( 14\bigr] \) ${y}^2={x}^3-11{x}+14$
64.1-c1 64.1-c \(\Q(\sqrt{-13}) \) \( 2^{6} \) 0 $\mathsf{trivial}$ $\mathrm{SU}(2)$ $1$ $7.681576726$ 2.130486058 \( -74088 \) \( \bigl[a + 1\) , \( a\) , \( 0\) , \( -3 a - 5\) , \( a + 7\bigr] \) ${y}^2+\left(a+1\right){x}{y}={x}^3+a{x}^2+\left(-3a-5\right){x}+a+7$
72.1-a1 72.1-a \(\Q(\sqrt{-13}) \) \( 2^{3} \cdot 3^{2} \) $1$ $\Z/8\Z$ $\mathrm{SU}(2)$ $11.45024622$ $1.817673508$ 2.886217342 \( \frac{207646}{6561} \) \( \bigl[0\) , \( 1\) , \( 0\) , \( 16\) , \( 180\bigr] \) ${y}^2={x}^3+{x}^2+16{x}+180$
72.1-a2 72.1-a \(\Q(\sqrt{-13}) \) \( 2^{3} \cdot 3^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $1.431280778$ $7.270694035$ 2.886217342 \( \frac{2048}{3} \) \( \bigl[0\) , \( 1\) , \( 0\) , \( 1\) , \( 0\bigr] \) ${y}^2={x}^3+{x}^2+{x}$
72.1-a3 72.1-a \(\Q(\sqrt{-13}) \) \( 2^{3} \cdot 3^{2} \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $2.862561557$ $7.270694035$ 2.886217342 \( \frac{35152}{9} \) \( \bigl[0\) , \( 1\) , \( 0\) , \( -4\) , \( -4\bigr] \) ${y}^2={x}^3+{x}^2-4{x}-4$
72.1-a4 72.1-a \(\Q(\sqrt{-13}) \) \( 2^{3} \cdot 3^{2} \) $1$ $\Z/2\Z\oplus\Z/4\Z$ $\mathrm{SU}(2)$ $5.725123114$ $3.635347017$ 2.886217342 \( \frac{1556068}{81} \) \( \bigl[0\) , \( 1\) , \( 0\) , \( -24\) , \( 36\bigr] \) ${y}^2={x}^3+{x}^2-24{x}+36$
72.1-a5 72.1-a \(\Q(\sqrt{-13}) \) \( 2^{3} \cdot 3^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $1.431280778$ $3.635347017$ 2.886217342 \( \frac{28756228}{3} \) \( \bigl[0\) , \( 1\) , \( 0\) , \( -64\) , \( -220\bigr] \) ${y}^2={x}^3+{x}^2-64{x}-220$
72.1-a6 72.1-a \(\Q(\sqrt{-13}) \) \( 2^{3} \cdot 3^{2} \) $1$ $\Z/4\Z$ $\mathrm{SU}(2)$ $11.45024622$ $1.817673508$ 2.886217342 \( \frac{3065617154}{9} \) \( \bigl[0\) , \( 1\) , \( 0\) , \( -384\) , \( 2772\bigr] \) ${y}^2={x}^3+{x}^2-384{x}+2772$
72.1-b1 72.1-b \(\Q(\sqrt{-13}) \) \( 2^{3} \cdot 3^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $1.817673508$ 2.016527704 \( \frac{207646}{6561} \) \( \bigl[0\) , \( -1\) , \( 0\) , \( 16\) , \( -180\bigr] \) ${y}^2={x}^3-{x}^2+16{x}-180$
72.1-b2 72.1-b \(\Q(\sqrt{-13}) \) \( 2^{3} \cdot 3^{2} \) 0 $\Z/4\Z$ $\mathrm{SU}(2)$ $1$ $7.270694035$ 2.016527704 \( \frac{2048}{3} \) \( \bigl[0\) , \( -1\) , \( 0\) , \( 1\) , \( 0\bigr] \) ${y}^2={x}^3-{x}^2+{x}$
72.1-b3 72.1-b \(\Q(\sqrt{-13}) \) \( 2^{3} \cdot 3^{2} \) 0 $\Z/2\Z\oplus\Z/4\Z$ $\mathrm{SU}(2)$ $1$ $7.270694035$ 2.016527704 \( \frac{35152}{9} \) \( \bigl[0\) , \( -1\) , \( 0\) , \( -4\) , \( 4\bigr] \) ${y}^2={x}^3-{x}^2-4{x}+4$
72.1-b4 72.1-b \(\Q(\sqrt{-13}) \) \( 2^{3} \cdot 3^{2} \) 0 $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $3.635347017$ 2.016527704 \( \frac{1556068}{81} \) \( \bigl[0\) , \( -1\) , \( 0\) , \( -24\) , \( -36\bigr] \) ${y}^2={x}^3-{x}^2-24{x}-36$
72.1-b5 72.1-b \(\Q(\sqrt{-13}) \) \( 2^{3} \cdot 3^{2} \) 0 $\Z/4\Z$ $\mathrm{SU}(2)$ $1$ $3.635347017$ 2.016527704 \( \frac{28756228}{3} \) \( \bigl[0\) , \( -1\) , \( 0\) , \( -64\) , \( 220\bigr] \) ${y}^2={x}^3-{x}^2-64{x}+220$
72.1-b6 72.1-b \(\Q(\sqrt{-13}) \) \( 2^{3} \cdot 3^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $1.817673508$ 2.016527704 \( \frac{3065617154}{9} \) \( \bigl[0\) , \( -1\) , \( 0\) , \( -384\) , \( -2772\bigr] \) ${y}^2={x}^3-{x}^2-384{x}-2772$
98.2-a1 98.2-a \(\Q(\sqrt{-13}) \) \( 2 \cdot 7^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $10.40550172$ $0.875417135$ 2.526424896 \( -\frac{548347731625}{1835008} \) \( \bigl[1\) , \( 0\) , \( 1\) , \( -171\) , \( -874\bigr] \) ${y}^2+{x}{y}+{y}={x}^3-171{x}-874$
98.2-a2 98.2-a \(\Q(\sqrt{-13}) \) \( 2 \cdot 7^{2} \) $1$ $\Z/6\Z$ $\mathrm{SU}(2)$ $10.40550172$ $7.878754216$ 2.526424896 \( -\frac{15625}{28} \) \( \bigl[1\) , \( 0\) , \( 1\) , \( -1\) , \( 0\bigr] \) ${y}^2+{x}{y}+{y}={x}^3-{x}$
98.2-a3 98.2-a \(\Q(\sqrt{-13}) \) \( 2 \cdot 7^{2} \) $1$ $\Z/6\Z$ $\mathrm{SU}(2)$ $3.468500574$ $2.626251405$ 2.526424896 \( \frac{9938375}{21952} \) \( \bigl[1\) , \( 0\) , \( 1\) , \( 4\) , \( -6\bigr] \) ${y}^2+{x}{y}+{y}={x}^3+4{x}-6$
98.2-a4 98.2-a \(\Q(\sqrt{-13}) \) \( 2 \cdot 7^{2} \) $1$ $\Z/6\Z$ $\mathrm{SU}(2)$ $1.734250287$ $1.313125702$ 2.526424896 \( \frac{4956477625}{941192} \) \( \bigl[1\) , \( 0\) , \( 1\) , \( -36\) , \( -70\bigr] \) ${y}^2+{x}{y}+{y}={x}^3-36{x}-70$
98.2-a5 98.2-a \(\Q(\sqrt{-13}) \) \( 2 \cdot 7^{2} \) $1$ $\Z/6\Z$ $\mathrm{SU}(2)$ $5.202750861$ $3.939377108$ 2.526424896 \( \frac{128787625}{98} \) \( \bigl[1\) , \( 0\) , \( 1\) , \( -11\) , \( 12\bigr] \) ${y}^2+{x}{y}+{y}={x}^3-11{x}+12$
98.2-a6 98.2-a \(\Q(\sqrt{-13}) \) \( 2 \cdot 7^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $5.202750861$ $0.437708567$ 2.526424896 \( \frac{2251439055699625}{25088} \) \( \bigl[1\) , \( 0\) , \( 1\) , \( -2731\) , \( -55146\bigr] \) ${y}^2+{x}{y}+{y}={x}^3-2731{x}-55146$
Next   displayed columns for results

  *The rank, regulator and analytic order of Ш are not known for all curves in the database; curves for which these are unknown will not appear in searches specifying one of these quantities.