Base field \(\Q(\sqrt{-10}) \)
Generator \(a\), with minimal polynomial \( x^{2} + 10 \); class number \(2\).
Weierstrass equation
This is not a global minimal model: it is minimal at all primes except \((2,a)\). No global minimal model exists.
Mordell-Weil group structure
\(\Z \oplus \Z/{2}\Z\)
Mordell-Weil generators
| $P$ | $\hat{h}(P)$ | Order |
|---|---|---|
| $\left(0 : -36 : 1\right)$ | $0.22290528492684580290750854868057503920$ | $\infty$ |
| $\left(9 : 0 : 1\right)$ | $0$ | $2$ |
Invariants
| Conductor: | $\frak{N}$ | = | \((60,12a)\) | = | \((2,a)^{4}\cdot(5,a)\cdot(3)\) |
|
| |||||
| Conductor norm: | $N(\frak{N})$ | = | \( 720 \) | = | \(2^{4}\cdot5\cdot9\) |
|
| |||||
| Discriminant: | $\Delta$ | = | $829440$ | ||
| Discriminant ideal: | $(\Delta)$ | = | \((829440)\) | = | \((2,a)^{22}\cdot(5,a)^{2}\cdot(3)^{4}\) |
|
| |||||
| Discriminant norm: | $N(\Delta)$ | = | \( 687970713600 \) | = | \(2^{22}\cdot5^{2}\cdot9^{4}\) |
|
| |||||
| Minimal discriminant: | $\frak{D}_{\mathrm{min}}$ | = | \((12960)\) | = | \((2,a)^{10}\cdot(5,a)^{2}\cdot(3)^{4}\) |
| Minimal discriminant norm: | $N(\frak{D}_{\mathrm{min}})$ | = | \( 167961600 \) | = | \(2^{10}\cdot5^{2}\cdot9^{4}\) |
| j-invariant: | $j$ | = | \( \frac{546718898}{405} \) | ||
|
| |||||
| Endomorphism ring: | $\mathrm{End}(E)$ | = | \(\Z\) | ||
| Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) | ||
|
| |||||
| Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | ||
BSD invariants
| Analytic rank: | $r_{\mathrm{an}}$ | = | \( 1 \) |
|
|
|||
| Mordell-Weil rank: | $r$ | = | \(1\) |
| Regulator: | $\mathrm{Reg}(E/K)$ | ≈ | \( 0.22290528492684580290750854868057503920 \) |
| Néron-Tate Regulator: | $\mathrm{Reg}_{\mathrm{NT}}(E/K)$ | ≈ | \( 0.445810569853691605815017097361150078400 \) |
| Global period: | $\Omega(E/K)$ | ≈ | \( 3.4815868857444651090958391022362644074 \) |
| Tamagawa product: | $\prod_{\frak{p}}c_{\frak{p}}$ | = | \( 32 \) = \(2^{2}\cdot2\cdot2^{2}\) |
| Torsion order: | $\#E(K)_{\mathrm{tor}}$ | = | \(2\) |
| Special value: | $L^{(r)}(E/K,1)/r!$ | ≈ | \( 1.9633041754419939415054016773911494377 \) |
| Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | = | \( 1 \) (rounded) |
BSD formula
$$\begin{aligned}1.963304175 \approx L'(E/K,1) & \overset{?}{=} \frac{ \# ะจ(E/K) \cdot \Omega(E/K) \cdot \mathrm{Reg}_{\mathrm{NT}}(E/K) \cdot \prod_{\mathfrak{p}} c_{\mathfrak{p}} } { \#E(K)_{\mathrm{tor}}^2 \cdot \left|d_K\right|^{1/2} } \\ & \approx \frac{ 1 \cdot 3.481587 \cdot 0.445811 \cdot 32 } { {2^2 \cdot 6.324555} } \\ & \approx 1.963304175 \end{aligned}$$
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 3 primes $\frak{p}$ of bad reduction. Primes of good reduction for the curve but which divide the discriminant of the model above (if any) are included.
| $\mathfrak{p}$ | $N(\mathfrak{p})$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | \(\mathrm{ord}_{\mathfrak{p}}(\mathfrak{N}\)) | \(\mathrm{ord}_{\mathfrak{p}}(\mathfrak{D}_{\mathrm{min}}\)) | \(\mathrm{ord}_{\mathfrak{p}}(\mathrm{den}(j))\) |
|---|---|---|---|---|---|---|---|---|
| \((2,a)\) | \(2\) | \(4\) | \(I_{2}^{*}\) | Additive | \(-1\) | \(4\) | \(10\) | \(0\) |
| \((5,a)\) | \(5\) | \(2\) | \(I_{2}\) | Non-split multiplicative | \(1\) | \(1\) | \(2\) | \(2\) |
| \((3)\) | \(9\) | \(4\) | \(I_{4}\) | Split multiplicative | \(-1\) | \(1\) | \(4\) | \(4\) |
Galois Representations
The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.
| prime | Image of Galois Representation |
|---|---|
| \(2\) | 2B |
Isogenies and isogeny class
This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\)
2 and 4.
Its isogeny class
720.1-a
consists of curves linked by isogenies of
degrees dividing 4.
Base change
This elliptic curve is a \(\Q\)-curve. It is the base change of the following 2 elliptic curves:
| Base field | Curve |
|---|---|
| \(\Q\) | 240.a1 |
| \(\Q\) | 4800.bl1 |