Learn more

Refine search


Results (9 matches)

  displayed columns for results
Label Class Base field Conductor norm Rank Torsion CM Sato-Tate Regulator Period Leading coeff j-invariant Weierstrass coefficients Weierstrass equation
87616.2-a1 87616.2-a \(\Q(\sqrt{-1}) \) \( 2^{6} \cdot 37^{2} \) $1$ $\mathsf{trivial}$ $\mathrm{SU}(2)$ $0.211417693$ $1.908316256$ 3.227614565 \( \frac{337153536}{37} \) \( \bigl[0\) , \( 0\) , \( 0\) , \( 58\) , \( -170 i\bigr] \) ${y}^2={x}^{3}+58{x}-170i$
87616.2-b1 87616.2-b \(\Q(\sqrt{-1}) \) \( 2^{6} \cdot 37^{2} \) $2$ $\mathsf{trivial}$ $\mathrm{SU}(2)$ $0.119680982$ $1.129937894$ 5.409283089 \( -\frac{33742443520}{69343957} a + \frac{85490406912}{69343957} \) \( \bigl[0\) , \( -i - 1\) , \( 0\) , \( 34 i - 6\) , \( -6 i + 68\bigr] \) ${y}^2={x}^{3}+\left(-i-1\right){x}^{2}+\left(34i-6\right){x}-6i+68$
87616.2-b2 87616.2-b \(\Q(\sqrt{-1}) \) \( 2^{6} \cdot 37^{2} \) $2$ $\mathsf{trivial}$ $\mathrm{SU}(2)$ $0.119680982$ $1.129937894$ 5.409283089 \( \frac{33742443520}{69343957} a + \frac{85490406912}{69343957} \) \( \bigl[0\) , \( i - 1\) , \( 0\) , \( -34 i - 6\) , \( 6 i + 68\bigr] \) ${y}^2={x}^{3}+\left(i-1\right){x}^{2}+\left(-34i-6\right){x}+6i+68$
87616.2-c1 87616.2-c \(\Q(\sqrt{-1}) \) \( 2^{6} \cdot 37^{2} \) $2$ $\mathsf{trivial}$ $\mathrm{SU}(2)$ $0.212119068$ $3.766152088$ 6.390981384 \( \frac{64000}{37} \) \( \bigl[0\) , \( i\) , \( 0\) , \( 3\) , \( i\bigr] \) ${y}^2={x}^{3}+i{x}^{2}+3{x}+i$
87616.2-d1 87616.2-d \(\Q(\sqrt{-1}) \) \( 2^{6} \cdot 37^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $2.873954024$ $2.010657031$ 5.778535867 \( -\frac{4526180208}{1874161} a - \frac{9479776248}{1874161} \) \( \bigl[i + 1\) , \( i\) , \( i + 1\) , \( -16 i - 1\) , \( -20 i + 24\bigr] \) ${y}^2+\left(i+1\right){x}{y}+\left(i+1\right){y}={x}^{3}+i{x}^{2}+\left(-16i-1\right){x}-20i+24$
87616.2-d2 87616.2-d \(\Q(\sqrt{-1}) \) \( 2^{6} \cdot 37^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $2.873954024$ $2.010657031$ 5.778535867 \( \frac{4526180208}{1874161} a - \frac{9479776248}{1874161} \) \( \bigl[i + 1\) , \( i\) , \( 0\) , \( 15 i - 1\) , \( 19 i + 9\bigr] \) ${y}^2+\left(i+1\right){x}{y}={x}^{3}+i{x}^{2}+\left(15i-1\right){x}+19i+9$
87616.2-d3 87616.2-d \(\Q(\sqrt{-1}) \) \( 2^{6} \cdot 37^{2} \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $1.436977012$ $2.010657031$ 5.778535867 \( -\frac{2299968}{1369} \) \( \bigl[0\) , \( 0\) , \( 0\) , \( 11\) , \( -20 i\bigr] \) ${y}^2={x}^{3}+11{x}-20i$
87616.2-d4 87616.2-d \(\Q(\sqrt{-1}) \) \( 2^{6} \cdot 37^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $2.873954024$ $2.010657031$ 5.778535867 \( \frac{203297472}{37} \) \( \bigl[0\) , \( 0\) , \( 0\) , \( -49\) , \( 132\bigr] \) ${y}^2={x}^{3}-49{x}+132$
87616.2-e1 87616.2-e \(\Q(\sqrt{-1}) \) \( 2^{6} \cdot 37^{2} \) 0 $\mathsf{trivial}$ $\mathrm{SU}(2)$ $1$ $0.746769312$ 5.974154499 \( \frac{31077609984}{50653} \) \( \bigl[0\) , \( 0\) , \( 0\) , \( 262\) , \( 1630 i\bigr] \) ${y}^2={x}^{3}+262{x}+1630i$
  displayed columns for results

  *The rank, regulator and analytic order of Ш are not known for all curves in the database; curves for which these are unknown will not appear in searches specifying one of these quantities.