Learn more

The results below are complete, since the LMFDB contains all elliptic curves with conductor norm at most 100000 over imaginary quadratic fields with absolute discriminant 4

Note: The completeness Only modular elliptic curves are included

Refine search


Results (5 matches)

  displayed columns for results
Label Class Base field Conductor norm Rank Torsion CM Sato-Tate Regulator Period Leading coeff j-invariant Weierstrass coefficients Weierstrass equation
7225.1-CMc1 7225.1-CMc \(\Q(\sqrt{-1}) \) \( 5^{2} \cdot 17^{2} \) $0 \le r \le 2$ $\Z/2\Z$ $-4$ $\mathrm{U}(1)$ $1$ $1.098336064$ 4.393344256 \( 1728 \) \( \bigl[i + 1\) , \( i\) , \( i\) , \( 36 i + 14\) , \( 7 i - 18\bigr] \) ${y}^2+\left(i+1\right){x}{y}+i{y}={x}^{3}+i{x}^{2}+\left(36i+14\right){x}+7i-18$
7225.1-CMb1 7225.1-CMb \(\Q(\sqrt{-1}) \) \( 5^{2} \cdot 17^{2} \) 0 $\Z/2\Z$ $-4$ $\mathrm{U}(1)$ $1$ $2.230218809$ 4.460437619 \( 1728 \) \( \bigl[i + 1\) , \( i\) , \( 1\) , \( 5 i - 9\) , \( -4 i - 3\bigr] \) ${y}^2+\left(i+1\right){x}{y}+{y}={x}^{3}+i{x}^{2}+\left(5i-9\right){x}-4i-3$
7225.1-CMa1 7225.1-CMa \(\Q(\sqrt{-1}) \) \( 5^{2} \cdot 17^{2} \) $2$ $\Z/2\Z$ $-4$ $\mathrm{U}(1)$ $0.083859627$ $4.528555605$ 1.519051940 \( 1728 \) \( \bigl[i + 1\) , \( i\) , \( i\) , \( -2 i - 2\) , \( -i + 1\bigr] \) ${y}^2+\left(i+1\right){x}{y}+i{y}={x}^{3}+i{x}^{2}+\left(-2i-2\right){x}-i+1$
7225.1-a1 7225.1-a \(\Q(\sqrt{-1}) \) \( 5^{2} \cdot 17^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $0.385027262$ 0.770054525 \( \frac{34677248}{83521} a + \frac{158300864}{83521} \) \( \bigl[i + 1\) , \( i - 1\) , \( i\) , \( 211 i + 248\) , \( 77 i - 1279\bigr] \) ${y}^2+\left(i+1\right){x}{y}+i{y}={x}^{3}+\left(i-1\right){x}^{2}+\left(211i+248\right){x}+77i-1279$
7225.1-a2 7225.1-a \(\Q(\sqrt{-1}) \) \( 5^{2} \cdot 17^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $0.385027262$ 0.770054525 \( \frac{291200512}{289} a + \frac{204122816}{289} \) \( \bigl[i + 1\) , \( 0\) , \( i\) , \( -778 i - 765\) , \( -13002 i - 5018\bigr] \) ${y}^2+\left(i+1\right){x}{y}+i{y}={x}^{3}+\left(-778i-765\right){x}-13002i-5018$
  displayed columns for results

  *The rank, regulator and analytic order of Ш are not known for all curves in the database; curves for which these are unknown will not appear in searches specifying one of these quantities.