Learn more

The results below are complete, since the LMFDB contains all elliptic curves with conductor norm at most 100000 over imaginary quadratic fields with absolute discriminant 4

Note: The completeness Only modular elliptic curves are included

Refine search


Results (19 matches)

  displayed columns for results
Label Class Base field Conductor norm Rank Torsion CM Sato-Tate Regulator Period Leading coeff j-invariant Weierstrass coefficients Weierstrass equation
67600.1-CMb1 67600.1-CMb \(\Q(\sqrt{-1}) \) \( 2^{4} \cdot 5^{2} \cdot 13^{2} \) 0 $\Z/2\Z$ $-4$ $\mathrm{U}(1)$ $1$ $0.449098830$ 0.449098830 \( 1728 \) \( \bigl[0\) , \( 0\) , \( 0\) , \( 174 i - 157\) , \( 0\bigr] \) ${y}^2={x}^{3}+\left(174i-157\right){x}$
67600.1-CMa1 67600.1-CMa \(\Q(\sqrt{-1}) \) \( 2^{4} \cdot 5^{2} \cdot 13^{2} \) 0 $\Z/2\Z$ $-4$ $\mathrm{U}(1)$ $1$ $1.275176390$ 1.275176390 \( 1728 \) \( \bigl[0\) , \( 0\) , \( 0\) , \( 22 i + 19\) , \( 0\bigr] \) ${y}^2={x}^{3}+\left(22i+19\right){x}$
67600.1-a1 67600.1-a \(\Q(\sqrt{-1}) \) \( 2^{4} \cdot 5^{2} \cdot 13^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $0.623798259$ 0.623798259 \( \frac{256}{5} a + \frac{8048}{5} \) \( \bigl[i + 1\) , \( 0\) , \( 0\) , \( -93 i - 74\) , \( 48 i - 112\bigr] \) ${y}^2+\left(i+1\right){x}{y}={x}^{3}+\left(-93i-74\right){x}+48i-112$
67600.1-a2 67600.1-a \(\Q(\sqrt{-1}) \) \( 2^{4} \cdot 5^{2} \cdot 13^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $0.311899129$ 0.623798259 \( -\frac{4439964}{25} a + \frac{3656648}{25} \) \( \bigl[i + 1\) , \( 0\) , \( 0\) , \( -878 i - 944\) , \( -16162 i - 7582\bigr] \) ${y}^2+\left(i+1\right){x}{y}={x}^{3}+\left(-878i-944\right){x}-16162i-7582$
67600.1-b1 67600.1-b \(\Q(\sqrt{-1}) \) \( 2^{4} \cdot 5^{2} \cdot 13^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $0.299396318$ $1.314767969$ 3.149093514 \( -\frac{2224}{13} a + \frac{356}{13} \) \( \bigl[i + 1\) , \( -i - 1\) , \( 0\) , \( -12 i - 4\) , \( 54 i + 28\bigr] \) ${y}^2+\left(i+1\right){x}{y}={x}^{3}+\left(-i-1\right){x}^{2}+\left(-12i-4\right){x}+54i+28$
67600.1-b2 67600.1-b \(\Q(\sqrt{-1}) \) \( 2^{4} \cdot 5^{2} \cdot 13^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $0.598792636$ $0.657383984$ 3.149093514 \( \frac{47776420}{169} a + \frac{17266442}{169} \) \( \bigl[i + 1\) , \( -i - 1\) , \( 0\) , \( -232 i - 194\) , \( 2070 i + 540\bigr] \) ${y}^2+\left(i+1\right){x}{y}={x}^{3}+\left(-i-1\right){x}^{2}+\left(-232i-194\right){x}+2070i+540$
67600.1-c1 67600.1-c \(\Q(\sqrt{-1}) \) \( 2^{4} \cdot 5^{2} \cdot 13^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $0.153739610$ 0.614958440 \( \frac{10359522503116}{3570125} a - \frac{4364617727362}{3570125} \) \( \bigl[i + 1\) , \( 0\) , \( i + 1\) , \( 3290 i - 7061\) , \( 159838 i - 210616\bigr] \) ${y}^2+\left(i+1\right){x}{y}+\left(i+1\right){y}={x}^{3}+\left(3290i-7061\right){x}+159838i-210616$
67600.1-c2 67600.1-c \(\Q(\sqrt{-1}) \) \( 2^{4} \cdot 5^{2} \cdot 13^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $0.153739610$ 0.614958440 \( -\frac{2896194844812}{3173828125} a + \frac{3398200522034}{3173828125} \) \( \bigl[i + 1\) , \( 0\) , \( i + 1\) , \( -1470 i + 1119\) , \( 14542 i - 22988\bigr] \) ${y}^2+\left(i+1\right){x}{y}+\left(i+1\right){y}={x}^{3}+\left(-1470i+1119\right){x}+14542i-22988$
67600.1-c3 67600.1-c \(\Q(\sqrt{-1}) \) \( 2^{4} \cdot 5^{2} \cdot 13^{2} \) 0 $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $0.307479220$ 0.614958440 \( \frac{3643553424}{2640625} a + \frac{4710369332}{2640625} \) \( \bigl[i + 1\) , \( 0\) , \( i + 1\) , \( 270 i - 451\) , \( 1258 i - 3426\bigr] \) ${y}^2+\left(i+1\right){x}{y}+\left(i+1\right){y}={x}^{3}+\left(270i-451\right){x}+1258i-3426$
67600.1-c4 67600.1-c \(\Q(\sqrt{-1}) \) \( 2^{4} \cdot 5^{2} \cdot 13^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $0.614958440$ 0.614958440 \( -\frac{50931328}{1625} a + \frac{11807696}{1625} \) \( \bigl[i + 1\) , \( 0\) , \( i + 1\) , \( 190 i - 136\) , \( -1388 i + 127\bigr] \) ${y}^2+\left(i+1\right){x}{y}+\left(i+1\right){y}={x}^{3}+\left(190i-136\right){x}-1388i+127$
67600.1-d1 67600.1-d \(\Q(\sqrt{-1}) \) \( 2^{4} \cdot 5^{2} \cdot 13^{2} \) 0 $\mathsf{trivial}$ $\mathrm{SU}(2)$ $1$ $2.533498384$ 2.533498384 \( -512 a + 768 \) \( \bigl[0\) , \( 1\) , \( 0\) , \( 2 i + 6\) , \( 6 i + 5\bigr] \) ${y}^2={x}^{3}+{x}^{2}+\left(2i+6\right){x}+6i+5$
67600.1-e1 67600.1-e \(\Q(\sqrt{-1}) \) \( 2^{4} \cdot 5^{2} \cdot 13^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $0.302143887$ 2.417151103 \( -\frac{906876}{2197} a + \frac{1118799}{2197} \) \( \bigl[i + 1\) , \( i\) , \( 0\) , \( 29 i - 379\) , \( -3876 i + 1497\bigr] \) ${y}^2+\left(i+1\right){x}{y}={x}^{3}+i{x}^{2}+\left(29i-379\right){x}-3876i+1497$
67600.1-e2 67600.1-e \(\Q(\sqrt{-1}) \) \( 2^{4} \cdot 5^{2} \cdot 13^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $0.151071943$ 2.417151103 \( \frac{10047446145}{4826809} a + \frac{17756992962}{4826809} \) \( \bigl[i + 1\) , \( i\) , \( 0\) , \( 649 i + 2461\) , \( -33648 i + 20493\bigr] \) ${y}^2+\left(i+1\right){x}{y}={x}^{3}+i{x}^{2}+\left(649i+2461\right){x}-33648i+20493$
67600.1-f1 67600.1-f \(\Q(\sqrt{-1}) \) \( 2^{4} \cdot 5^{2} \cdot 13^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $0.359365980$ 2.874927842 \( \frac{80398914857}{19531250} a - \frac{197826917099}{19531250} \) \( \bigl[i + 1\) , \( i - 1\) , \( i + 1\) , \( 307 i - 452\) , \( -4378 i + 3383\bigr] \) ${y}^2+\left(i+1\right){x}{y}+\left(i+1\right){y}={x}^{3}+\left(i-1\right){x}^{2}+\left(307i-452\right){x}-4378i+3383$
67600.1-f2 67600.1-f \(\Q(\sqrt{-1}) \) \( 2^{4} \cdot 5^{2} \cdot 13^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $0.718731960$ 2.874927842 \( -\frac{10462207}{6250} a - \frac{2706038}{3125} \) \( \bigl[i + 1\) , \( i - 1\) , \( i + 1\) , \( 87 i + 8\) , \( 130 i + 339\bigr] \) ${y}^2+\left(i+1\right){x}{y}+\left(i+1\right){y}={x}^{3}+\left(i-1\right){x}^{2}+\left(87i+8\right){x}+130i+339$
67600.1-f3 67600.1-f \(\Q(\sqrt{-1}) \) \( 2^{4} \cdot 5^{2} \cdot 13^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $0.718731960$ 2.874927842 \( \frac{523313}{160} a + \frac{424661}{40} \) \( \bigl[i + 1\) , \( -i\) , \( 0\) , \( -61 i + 125\) , \( -484 i - 365\bigr] \) ${y}^2+\left(i+1\right){x}{y}={x}^{3}-i{x}^{2}+\left(-61i+125\right){x}-484i-365$
67600.1-f4 67600.1-f \(\Q(\sqrt{-1}) \) \( 2^{4} \cdot 5^{2} \cdot 13^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $0.359365980$ 2.874927842 \( \frac{12916359143}{200} a + \frac{17274394699}{200} \) \( \bigl[i + 1\) , \( -i\) , \( 0\) , \( -941 i + 1965\) , \( -31012 i - 24461\bigr] \) ${y}^2+\left(i+1\right){x}{y}={x}^{3}-i{x}^{2}+\left(-941i+1965\right){x}-31012i-24461$
67600.1-g1 67600.1-g \(\Q(\sqrt{-1}) \) \( 2^{4} \cdot 5^{2} \cdot 13^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $0.518674966$ 4.149399729 \( \frac{109298}{1625} a + \frac{1963264}{1625} \) \( \bigl[i + 1\) , \( i + 1\) , \( i + 1\) , \( 133 i - 84\) , \( 20 i - 593\bigr] \) ${y}^2+\left(i+1\right){x}{y}+\left(i+1\right){y}={x}^{3}+\left(i+1\right){x}^{2}+\left(133i-84\right){x}+20i-593$
67600.1-g2 67600.1-g \(\Q(\sqrt{-1}) \) \( 2^{4} \cdot 5^{2} \cdot 13^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $0.259337483$ 4.149399729 \( -\frac{321047281}{2640625} a + \frac{6395175767}{2640625} \) \( \bigl[i + 1\) , \( i + 1\) , \( i + 1\) , \( -657 i + 386\) , \( 190 i - 3903\bigr] \) ${y}^2+\left(i+1\right){x}{y}+\left(i+1\right){y}={x}^{3}+\left(i+1\right){x}^{2}+\left(-657i+386\right){x}+190i-3903$
  displayed columns for results

  *The rank, regulator and analytic order of Ш are not known for all curves in the database; curves for which these are unknown will not appear in searches specifying one of these quantities.