Learn more

The results below are complete, since the LMFDB contains all elliptic curves with conductor norm at most 100000 over imaginary quadratic fields with absolute discriminant 4

Note: The completeness Only modular elliptic curves are included

Refine search


Results (4 matches)

  displayed columns for results
Label Class Base field Conductor norm Rank Torsion CM Sato-Tate Regulator Period Leading coeff j-invariant Weierstrass coefficients Weierstrass equation
576.1-a1 576.1-a \(\Q(\sqrt{-1}) \) \( 2^{6} \cdot 3^{2} \) 0 $\Z/4\Z$ $\mathrm{SU}(2)$ $1$ $4.690728597$ 1.172682149 \( \frac{97336}{81} \) \( \bigl[i + 1\) , \( -i\) , \( 0\) , \( -2\) , \( i\bigr] \) ${y}^2+\left(i+1\right){x}{y}={x}^{3}-i{x}^{2}-2{x}+i$
576.1-a2 576.1-a \(\Q(\sqrt{-1}) \) \( 2^{6} \cdot 3^{2} \) 0 $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $4.690728597$ 1.172682149 \( \frac{21952}{9} \) \( \bigl[0\) , \( -1\) , \( 0\) , \( -2\) , \( 0\bigr] \) ${y}^2={x}^{3}-{x}^{2}-2{x}$
576.1-a3 576.1-a \(\Q(\sqrt{-1}) \) \( 2^{6} \cdot 3^{2} \) 0 $\Z/4\Z$ $\mathrm{SU}(2)$ $1$ $4.690728597$ 1.172682149 \( \frac{140608}{3} \) \( \bigl[0\) , \( -i\) , \( 0\) , \( 4\) , \( 2 i\bigr] \) ${y}^2={x}^{3}-i{x}^{2}+4{x}+2i$
576.1-a4 576.1-a \(\Q(\sqrt{-1}) \) \( 2^{6} \cdot 3^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $4.690728597$ 1.172682149 \( \frac{7301384}{3} \) \( \bigl[i + 1\) , \( 0\) , \( i + 1\) , \( -i + 8\) , \( -8 i\bigr] \) ${y}^2+\left(i+1\right){x}{y}+\left(i+1\right){y}={x}^{3}+\left(-i+8\right){x}-8i$
  displayed columns for results

  *The rank, regulator and analytic order of Ш are not known for all curves in the database; curves for which these are unknown will not appear in searches specifying one of these quantities.