Learn more

The results below are complete, since the LMFDB contains all elliptic curves with conductor norm at most 100000 over imaginary quadratic fields with absolute discriminant 4

Note: The completeness Only modular elliptic curves are included

Refine search


Results (8 matches)

  displayed columns for results
Label Class Base field Conductor norm Rank Torsion CM Sato-Tate Regulator Period Leading coeff j-invariant Weierstrass coefficients Weierstrass equation
512.1-a1 512.1-a \(\Q(\sqrt{-1}) \) \( 2^{9} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $3.920761445$ 0.980190361 \( -118792 a - 11528 \) \( \bigl[0\) , \( -i + 1\) , \( 0\) , \( -6 i + 5\) , \( -i + 7\bigr] \) ${y}^2={x}^{3}+\left(-i+1\right){x}^{2}+\left(-6i+5\right){x}-i+7$
512.1-a2 512.1-a \(\Q(\sqrt{-1}) \) \( 2^{9} \) 0 $\Z/4\Z$ $\mathrm{SU}(2)$ $1$ $3.920761445$ 0.980190361 \( 118792 a - 11528 \) \( \bigl[0\) , \( i - 1\) , \( 0\) , \( -6 i - 5\) , \( -7 i + 1\bigr] \) ${y}^2={x}^{3}+\left(i-1\right){x}^{2}+\left(-6i-5\right){x}-7i+1$
512.1-a3 512.1-a \(\Q(\sqrt{-1}) \) \( 2^{9} \) 0 $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $7.841522890$ 0.980190361 \( 128 \) \( \bigl[0\) , \( i - 1\) , \( 0\) , \( -i\) , \( 0\bigr] \) ${y}^2={x}^{3}+\left(i-1\right){x}^{2}-i{x}$
512.1-a4 512.1-a \(\Q(\sqrt{-1}) \) \( 2^{9} \) 0 $\Z/4\Z$ $\mathrm{SU}(2)$ $1$ $3.920761445$ 0.980190361 \( 10976 \) \( \bigl[0\) , \( i - 1\) , \( 0\) , \( 4 i\) , \( -4 i - 4\bigr] \) ${y}^2={x}^{3}+\left(i-1\right){x}^{2}+4i{x}-4i-4$
512.1-b1 512.1-b \(\Q(\sqrt{-1}) \) \( 2^{9} \) 0 $\Z/4\Z$ $\mathrm{SU}(2)$ $1$ $3.920761445$ 0.980190361 \( -118792 a - 11528 \) \( \bigl[0\) , \( -i - 1\) , \( 0\) , \( 6 i - 5\) , \( 7 i + 1\bigr] \) ${y}^2={x}^{3}+\left(-i-1\right){x}^{2}+\left(6i-5\right){x}+7i+1$
512.1-b2 512.1-b \(\Q(\sqrt{-1}) \) \( 2^{9} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $3.920761445$ 0.980190361 \( 118792 a - 11528 \) \( \bigl[0\) , \( i + 1\) , \( 0\) , \( 6 i + 5\) , \( i + 7\bigr] \) ${y}^2={x}^{3}+\left(i+1\right){x}^{2}+\left(6i+5\right){x}+i+7$
512.1-b3 512.1-b \(\Q(\sqrt{-1}) \) \( 2^{9} \) 0 $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $7.841522890$ 0.980190361 \( 128 \) \( \bigl[0\) , \( i + 1\) , \( 0\) , \( i\) , \( 0\bigr] \) ${y}^2={x}^{3}+\left(i+1\right){x}^{2}+i{x}$
512.1-b4 512.1-b \(\Q(\sqrt{-1}) \) \( 2^{9} \) 0 $\Z/4\Z$ $\mathrm{SU}(2)$ $1$ $3.920761445$ 0.980190361 \( 10976 \) \( \bigl[0\) , \( i + 1\) , \( 0\) , \( -4 i\) , \( -4 i + 4\bigr] \) ${y}^2={x}^{3}+\left(i+1\right){x}^{2}-4i{x}-4i+4$
  displayed columns for results

  *The rank, regulator and analytic order of Ш are not known for all curves in the database; curves for which these are unknown will not appear in searches specifying one of these quantities.