Learn more

Refine search


Results (9 matches)

  displayed columns for results
Label Class Base field Conductor norm Rank Torsion CM Sato-Tate Regulator Period Leading coeff j-invariant Weierstrass coefficients Weierstrass equation
3600.3-a1 3600.3-a \(\Q(\sqrt{-1}) \) \( 2^{4} \cdot 3^{2} \cdot 5^{2} \) $1$ $\mathsf{trivial}$ $\mathrm{SU}(2)$ $0.021599395$ $3.540532518$ 1.835360692 \( \frac{2401}{3} a + \frac{343}{3} \) \( \bigl[i + 1\) , \( -i - 1\) , \( i + 1\) , \( -3 i + 2\) , \( 2 i + 1\bigr] \) ${y}^2+\left(i+1\right){x}{y}+\left(i+1\right){y}={x}^{3}+\left(-i-1\right){x}^{2}+\left(-3i+2\right){x}+2i+1$
3600.3-b1 3600.3-b \(\Q(\sqrt{-1}) \) \( 2^{4} \cdot 3^{2} \cdot 5^{2} \) $1$ $\mathsf{trivial}$ $\mathrm{SU}(2)$ $0.056808315$ $1.480066113$ 2.017921495 \( -\frac{1039}{24} a + \frac{13913}{24} \) \( \bigl[i + 1\) , \( i - 1\) , \( i + 1\) , \( 5 i - 14\) , \( 16 i + 21\bigr] \) ${y}^2+\left(i+1\right){x}{y}+\left(i+1\right){y}={x}^{3}+\left(i-1\right){x}^{2}+\left(5i-14\right){x}+16i+21$
3600.3-b2 3600.3-b \(\Q(\sqrt{-1}) \) \( 2^{4} \cdot 3^{2} \cdot 5^{2} \) $1$ $\mathsf{trivial}$ $\mathrm{SU}(2)$ $0.011361663$ $1.480066113$ 2.017921495 \( -\frac{957521}{486} a + \frac{776647}{486} \) \( \bigl[i + 1\) , \( 0\) , \( 0\) , \( -3 i + 23\) , \( 36 i + 21\bigr] \) ${y}^2+\left(i+1\right){x}{y}={x}^{3}+\left(-3i+23\right){x}+36i+21$
3600.3-c1 3600.3-c \(\Q(\sqrt{-1}) \) \( 2^{4} \cdot 3^{2} \cdot 5^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $0.812888305$ 1.625776610 \( \frac{207646}{6561} \) \( \bigl[i + 1\) , \( -1\) , \( i + 1\) , \( -17 i + 12\) , \( 247 i - 45\bigr] \) ${y}^2+\left(i+1\right){x}{y}+\left(i+1\right){y}={x}^{3}-{x}^{2}+\left(-17i+12\right){x}+247i-45$
3600.3-c2 3600.3-c \(\Q(\sqrt{-1}) \) \( 2^{4} \cdot 3^{2} \cdot 5^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $3.251553221$ 1.625776610 \( \frac{2048}{3} \) \( \bigl[0\) , \( -i + 1\) , \( 0\) , \( 2 i - 2\) , \( 2 i + 3\bigr] \) ${y}^2={x}^{3}+\left(-i+1\right){x}^{2}+\left(2i-2\right){x}+2i+3$
3600.3-c3 3600.3-c \(\Q(\sqrt{-1}) \) \( 2^{4} \cdot 3^{2} \cdot 5^{2} \) 0 $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $3.251553221$ 1.625776610 \( \frac{35152}{9} \) \( \bigl[i + 1\) , \( -1\) , \( i + 1\) , \( 3 i - 3\) , \( -6 i + 1\bigr] \) ${y}^2+\left(i+1\right){x}{y}+\left(i+1\right){y}={x}^{3}-{x}^{2}+\left(3i-3\right){x}-6i+1$
3600.3-c4 3600.3-c \(\Q(\sqrt{-1}) \) \( 2^{4} \cdot 3^{2} \cdot 5^{2} \) 0 $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $1.625776610$ 1.625776610 \( \frac{1556068}{81} \) \( \bigl[i + 1\) , \( -i + 1\) , \( i + 1\) , \( 23 i - 18\) , \( -50 i + 9\bigr] \) ${y}^2+\left(i+1\right){x}{y}+\left(i+1\right){y}={x}^{3}+\left(-i+1\right){x}^{2}+\left(23i-18\right){x}-50i+9$
3600.3-c5 3600.3-c \(\Q(\sqrt{-1}) \) \( 2^{4} \cdot 3^{2} \cdot 5^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $1.625776610$ 1.625776610 \( \frac{28756228}{3} \) \( \bigl[i + 1\) , \( -1\) , \( i + 1\) , \( 63 i - 48\) , \( -303 i + 55\bigr] \) ${y}^2+\left(i+1\right){x}{y}+\left(i+1\right){y}={x}^{3}-{x}^{2}+\left(63i-48\right){x}-303i+55$
3600.3-c6 3600.3-c \(\Q(\sqrt{-1}) \) \( 2^{4} \cdot 3^{2} \cdot 5^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $0.812888305$ 1.625776610 \( \frac{3065617154}{9} \) \( \bigl[i + 1\) , \( -i + 1\) , \( i + 1\) , \( 383 i - 288\) , \( -3812 i + 693\bigr] \) ${y}^2+\left(i+1\right){x}{y}+\left(i+1\right){y}={x}^{3}+\left(-i+1\right){x}^{2}+\left(383i-288\right){x}-3812i+693$
  displayed columns for results

  *The rank, regulator and analytic order of Ш are not known for all curves in the database; curves for which these are unknown will not appear in searches specifying one of these quantities.