Learn more

The results below are complete, since the LMFDB contains all elliptic curves with conductor norm at most 100000 over imaginary quadratic fields with absolute discriminant 4

Note: The completeness Only modular elliptic curves are included

Refine search


Results (5 matches)

  displayed columns for results
Label Class Base field Conductor norm Rank Torsion CM Sato-Tate Regulator Period Leading coeff j-invariant Weierstrass coefficients Weierstrass equation
194.2-a1 194.2-a \(\Q(\sqrt{-1}) \) \( 2 \cdot 97 \) 0 $\Z/3\Z$ $\mathrm{SU}(2)$ $1$ $5.067207090$ 0.563023010 \( \frac{8303035}{776} a - \frac{179274083}{776} \) \( \bigl[1\) , \( -i - 1\) , \( i\) , \( 3 i - 4\) , \( 4 i\bigr] \) ${y}^2+{x}{y}+i{y}={x}^{3}+\left(-i-1\right){x}^{2}+\left(3i-4\right){x}+4i$
194.2-a2 194.2-a \(\Q(\sqrt{-1}) \) \( 2 \cdot 97 \) 0 $\Z/3\Z$ $\mathrm{SU}(2)$ $1$ $1.689069030$ 0.563023010 \( -\frac{1486569367205}{233644288} a - \frac{1058154142429}{233644288} \) \( \bigl[1\) , \( -i - 1\) , \( i\) , \( 23 i + 1\) , \( -33 i - 29\bigr] \) ${y}^2+{x}{y}+i{y}={x}^{3}+\left(-i-1\right){x}^{2}+\left(23i+1\right){x}-33i-29$
194.2-a3 194.2-a \(\Q(\sqrt{-1}) \) \( 2 \cdot 97 \) 0 $\mathsf{trivial}$ $\mathrm{SU}(2)$ $1$ $0.563023010$ 0.563023010 \( \frac{45722483399515}{813694976} a + \frac{8559354083197}{813694976} \) \( \bigl[1\) , \( -i - 1\) , \( i\) , \( -57 i + 306\) , \( -2126 i - 640\bigr] \) ${y}^2+{x}{y}+i{y}={x}^{3}+\left(-i-1\right){x}^{2}+\left(-57i+306\right){x}-2126i-640$
194.2-b1 194.2-b \(\Q(\sqrt{-1}) \) \( 2 \cdot 97 \) 0 $\mathsf{trivial}$ $\mathrm{SU}(2)$ $1$ $0.902019052$ 0.902019052 \( \frac{103211006703479285}{161596568956226} a + \frac{36131733240801619}{161596568956226} \) \( \bigl[i\) , \( -i\) , \( i\) , \( -24 i - 35\) , \( 180 i - 19\bigr] \) ${y}^2+i{x}{y}+i{y}={x}^{3}-i{x}^{2}+\left(-24i-35\right){x}+180i-19$
194.2-b2 194.2-b \(\Q(\sqrt{-1}) \) \( 2 \cdot 97 \) 0 $\Z/7\Z$ $\mathrm{SU}(2)$ $1$ $6.314133367$ 0.902019052 \( -\frac{493285}{1552} a + \frac{823523}{1552} \) \( \bigl[1\) , \( i\) , \( 1\) , \( i - 1\) , \( -1\bigr] \) ${y}^2+{x}{y}+{y}={x}^{3}+i{x}^{2}+\left(i-1\right){x}-1$
  displayed columns for results

  *The rank, regulator and analytic order of Ш are not known for all curves in the database; curves for which these are unknown will not appear in searches specifying one of these quantities.