Learn more

Refine search


Results (14 matches)

  displayed columns for results
Label Class Base field Conductor norm Rank Torsion CM Sato-Tate Regulator Period Leading coeff j-invariant Weierstrass coefficients Weierstrass equation
15250.5-a1 15250.5-a \(\Q(\sqrt{-1}) \) \( 2 \cdot 5^{3} \cdot 61 \) 0 $\mathsf{trivial}$ $\mathrm{SU}(2)$ $1$ $1.487421999$ 1.487421999 \( \frac{758131}{4880} a + \frac{8477283}{4880} \) \( \bigl[1\) , \( 1\) , \( i + 1\) , \( 20 i + 6\) , \( 18 i + 8\bigr] \) ${y}^2+{x}{y}+\left(i+1\right){y}={x}^{3}+{x}^{2}+\left(20i+6\right){x}+18i+8$
15250.5-b1 15250.5-b \(\Q(\sqrt{-1}) \) \( 2 \cdot 5^{3} \cdot 61 \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $0.174918828$ 1.749188287 \( \frac{1479632315329}{38125000000} a - \frac{155681515697137}{152500000000} \) \( \bigl[i\) , \( -1\) , \( 0\) , \( -1242 i - 231\) , \( -24076 i + 14207\bigr] \) ${y}^2+i{x}{y}={x}^{3}-{x}^{2}+\left(-1242i-231\right){x}-24076i+14207$
15250.5-b2 15250.5-b \(\Q(\sqrt{-1}) \) \( 2 \cdot 5^{3} \cdot 61 \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $0.087459414$ 1.749188287 \( -\frac{49764070512251349991}{363378906250000} a + \frac{496589835595616692069}{181689453125000} \) \( \bigl[i\) , \( -1\) , \( 0\) , \( -23242 i - 4231\) , \( -1206076 i + 690207\bigr] \) ${y}^2+i{x}{y}={x}^{3}-{x}^{2}+\left(-23242i-4231\right){x}-1206076i+690207$
15250.5-c1 15250.5-c \(\Q(\sqrt{-1}) \) \( 2 \cdot 5^{3} \cdot 61 \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $0.283804959$ $0.259291487$ 4.120939764 \( -\frac{134421165211}{3904000000} a + \frac{24723266109233}{15616000000} \) \( \bigl[1\) , \( -i\) , \( 1\) , \( 231 i + 643\) , \( -1464 i - 1557\bigr] \) ${y}^2+{x}{y}+{y}={x}^{3}-i{x}^{2}+\left(231i+643\right){x}-1464i-1557$
15250.5-c2 15250.5-c \(\Q(\sqrt{-1}) \) \( 2 \cdot 5^{3} \cdot 61 \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $0.567609918$ $0.129645743$ 4.120939764 \( -\frac{15137784998904637751}{58140625000000} a + \frac{19883457514836904489}{116281250000000} \) \( \bigl[1\) , \( -i\) , \( 1\) , \( 1511 i + 7683\) , \( -257720 i + 77035\bigr] \) ${y}^2+{x}{y}+{y}={x}^{3}-i{x}^{2}+\left(1511i+7683\right){x}-257720i+77035$
15250.5-d1 15250.5-d \(\Q(\sqrt{-1}) \) \( 2 \cdot 5^{3} \cdot 61 \) $1$ $\mathsf{trivial}$ $\mathrm{SU}(2)$ $0.144115105$ $2.436607209$ 4.213822872 \( \frac{1637458}{305} a + \frac{993713}{610} \) \( \bigl[1\) , \( -i + 1\) , \( i + 1\) , \( -11 i - 4\) , \( -15 i\bigr] \) ${y}^2+{x}{y}+\left(i+1\right){y}={x}^{3}+\left(-i+1\right){x}^{2}+\left(-11i-4\right){x}-15i$
15250.5-e1 15250.5-e \(\Q(\sqrt{-1}) \) \( 2 \cdot 5^{3} \cdot 61 \) 0 $\mathsf{trivial}$ $\mathrm{SU}(2)$ $1$ $0.523238224$ 2.616191120 \( -\frac{14362283266683}{8445963010} a - \frac{4028212136069}{8445963010} \) \( \bigl[1\) , \( 0\) , \( i + 1\) , \( -160 i - 47\) , \( -1048 i + 37\bigr] \) ${y}^2+{x}{y}+\left(i+1\right){y}={x}^{3}+\left(-160i-47\right){x}-1048i+37$
15250.5-e2 15250.5-e \(\Q(\sqrt{-1}) \) \( 2 \cdot 5^{3} \cdot 61 \) 0 $\Z/5\Z$ $\mathrm{SU}(2)$ $1$ $2.616191120$ 2.616191120 \( \frac{3415336683}{1525000} a + \frac{13679218069}{1525000} \) \( \bigl[i\) , \( 0\) , \( i + 1\) , \( 5 i + 9\) , \( -8 i + 8\bigr] \) ${y}^2+i{x}{y}+\left(i+1\right){y}={x}^{3}+\left(5i+9\right){x}-8i+8$
15250.5-f1 15250.5-f \(\Q(\sqrt{-1}) \) \( 2 \cdot 5^{3} \cdot 61 \) $1$ $\mathsf{trivial}$ $\mathrm{SU}(2)$ $0.296995162$ $0.640396656$ 4.564673011 \( \frac{2412612170774813}{4539620} a - \frac{197118882978304}{1134905} \) \( \bigl[i\) , \( i + 1\) , \( i + 1\) , \( -707 i + 403\) , \( 36 i - 8596\bigr] \) ${y}^2+i{x}{y}+\left(i+1\right){y}={x}^{3}+\left(i+1\right){x}^{2}+\left(-707i+403\right){x}+36i-8596$
15250.5-f2 15250.5-f \(\Q(\sqrt{-1}) \) \( 2 \cdot 5^{3} \cdot 61 \) $1$ $\Z/3\Z$ $\mathrm{SU}(2)$ $0.098998387$ $1.921189969$ 4.564673011 \( \frac{126711067}{488000} a - \frac{3148217}{15250} \) \( \bigl[i\) , \( i + 1\) , \( i + 1\) , \( -7 i + 3\) , \( -4 i - 16\bigr] \) ${y}^2+i{x}{y}+\left(i+1\right){y}={x}^{3}+\left(i+1\right){x}^{2}+\left(-7i+3\right){x}-4i-16$
15250.5-g1 15250.5-g \(\Q(\sqrt{-1}) \) \( 2 \cdot 5^{3} \cdot 61 \) 0 $\Z/4\Z$ $\mathrm{SU}(2)$ $1$ $0.760756446$ 3.043025785 \( \frac{88647880993}{381250} a - \frac{504879106567}{3050000} \) \( \bigl[1\) , \( 1\) , \( i\) , \( -35 i - 221\) , \( 286 i + 1167\bigr] \) ${y}^2+{x}{y}+i{y}={x}^{3}+{x}^{2}+\left(-35i-221\right){x}+286i+1167$
15250.5-g2 15250.5-g \(\Q(\sqrt{-1}) \) \( 2 \cdot 5^{3} \cdot 61 \) 0 $\Z/4\Z$ $\mathrm{SU}(2)$ $1$ $0.190189111$ 3.043025785 \( -\frac{247361637305780899}{5408531640625} a - \frac{782011543349473639}{10817063281250} \) \( \bigl[i\) , \( -1\) , \( 1\) , \( -2895 i - 451\) , \( 53744 i - 31877\bigr] \) ${y}^2+i{x}{y}+{y}={x}^{3}-{x}^{2}+\left(-2895i-451\right){x}+53744i-31877$
15250.5-g3 15250.5-g \(\Q(\sqrt{-1}) \) \( 2 \cdot 5^{3} \cdot 61 \) 0 $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $0.380378223$ 3.043025785 \( -\frac{7621558587291}{36337890625} a + \frac{42565044235277}{145351562500} \) \( \bigl[i\) , \( -1\) , \( 1\) , \( -115 i - 161\) , \( 606 i - 2011\bigr] \) ${y}^2+i{x}{y}+{y}={x}^{3}-{x}^{2}+\left(-115i-161\right){x}+606i-2011$
15250.5-g4 15250.5-g \(\Q(\sqrt{-1}) \) \( 2 \cdot 5^{3} \cdot 61 \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $0.190189111$ 3.043025785 \( \frac{14365511976455982039}{5817413330078125} a + \frac{67999514081753286571}{11634826660156250} \) \( \bigl[1\) , \( 1\) , \( i\) , \( 1385 i + 1089\) , \( -2956 i + 24961\bigr] \) ${y}^2+{x}{y}+i{y}={x}^{3}+{x}^{2}+\left(1385i+1089\right){x}-2956i+24961$
  displayed columns for results

  *The rank, regulator and analytic order of Ш are not known for all curves in the database; curves for which these are unknown will not appear in searches specifying one of these quantities.