Learn more

The results below are complete, since the LMFDB contains all elliptic curves with conductor norm at most 100000 over imaginary quadratic fields with absolute discriminant 4

Note: The completeness Only modular elliptic curves are included

Refine search


Results (16 matches)

  displayed columns for results
Label Class Base field Conductor norm Rank Torsion CM Sato-Tate Regulator Period Leading coeff j-invariant Weierstrass coefficients Weierstrass equation
12800.3-a1 12800.3-a \(\Q(\sqrt{-1}) \) \( 2^{9} \cdot 5^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $0.381642496$ $1.753417822$ 2.676715022 \( -118792 a - 11528 \) \( \bigl[0\) , \( -1\) , \( 0\) , \( -36 i - 6\) , \( 86 i - 40\bigr] \) ${y}^2={x}^{3}-{x}^{2}+\left(-36i-6\right){x}+86i-40$
12800.3-a2 12800.3-a \(\Q(\sqrt{-1}) \) \( 2^{9} \cdot 5^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $1.526569986$ $1.753417822$ 2.676715022 \( 118792 a - 11528 \) \( \bigl[0\) , \( -1\) , \( 0\) , \( 4 i - 36\) , \( 12 i - 72\bigr] \) ${y}^2={x}^{3}-{x}^{2}+\left(4i-36\right){x}+12i-72$
12800.3-a3 12800.3-a \(\Q(\sqrt{-1}) \) \( 2^{9} \cdot 5^{2} \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $0.763284993$ $3.506835645$ 2.676715022 \( 128 \) \( \bigl[0\) , \( -1\) , \( 0\) , \( -i - 1\) , \( 2 i - 2\bigr] \) ${y}^2={x}^{3}-{x}^{2}+\left(-i-1\right){x}+2i-2$
12800.3-a4 12800.3-a \(\Q(\sqrt{-1}) \) \( 2^{9} \cdot 5^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $0.381642496$ $1.753417822$ 2.676715022 \( 10976 \) \( \bigl[0\) , \( 1\) , \( 0\) , \( 14 i + 19\) , \( -18 i + 39\bigr] \) ${y}^2={x}^{3}+{x}^{2}+\left(14i+19\right){x}-18i+39$
12800.3-b1 12800.3-b \(\Q(\sqrt{-1}) \) \( 2^{9} \cdot 5^{2} \) 0 $\Z/4\Z$ $\mathrm{SU}(2)$ $1$ $1.320233139$ 1.320233139 \( -\frac{2150376}{5} a - \frac{2556152}{5} \) \( \bigl[0\) , \( i - 1\) , \( 0\) , \( 70 i + 47\) , \( 21 i - 339\bigr] \) ${y}^2={x}^{3}+\left(i-1\right){x}^{2}+\left(70i+47\right){x}+21i-339$
12800.3-b2 12800.3-b \(\Q(\sqrt{-1}) \) \( 2^{9} \cdot 5^{2} \) 0 $\Z/4\Z$ $\mathrm{SU}(2)$ $1$ $1.320233139$ 1.320233139 \( \frac{389056}{5} a - \frac{211168}{5} \) \( \bigl[0\) , \( -i + 1\) , \( 0\) , \( 60 i - 8\) , \( -132 i - 84\bigr] \) ${y}^2={x}^{3}+\left(-i+1\right){x}^{2}+\left(60i-8\right){x}-132i-84$
12800.3-b3 12800.3-b \(\Q(\sqrt{-1}) \) \( 2^{9} \cdot 5^{2} \) 0 $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $2.640466279$ 1.320233139 \( -\frac{13056}{25} a + \frac{27008}{25} \) \( \bigl[0\) , \( i - 1\) , \( 0\) , \( 5 i + 2\) , \( 2 i - 6\bigr] \) ${y}^2={x}^{3}+\left(i-1\right){x}^{2}+\left(5i+2\right){x}+2i-6$
12800.3-b4 12800.3-b \(\Q(\sqrt{-1}) \) \( 2^{9} \cdot 5^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $1.320233139$ 1.320233139 \( \frac{615304}{625} a + \frac{1440328}{625} \) \( \bigl[0\) , \( i - 1\) , \( 0\) , \( -30 i - 3\) , \( 33 i - 23\bigr] \) ${y}^2={x}^{3}+\left(i-1\right){x}^{2}+\left(-30i-3\right){x}+33i-23$
12800.3-c1 12800.3-c \(\Q(\sqrt{-1}) \) \( 2^{9} \cdot 5^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $1.753417822$ 1.753417822 \( -118792 a - 11528 \) \( \bigl[0\) , \( i\) , \( 0\) , \( 36 i + 6\) , \( -40 i - 86\bigr] \) ${y}^2={x}^{3}+i{x}^{2}+\left(36i+6\right){x}-40i-86$
12800.3-c2 12800.3-c \(\Q(\sqrt{-1}) \) \( 2^{9} \cdot 5^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $1.753417822$ 1.753417822 \( 118792 a - 11528 \) \( \bigl[0\) , \( i\) , \( 0\) , \( -4 i + 36\) , \( -72 i - 12\bigr] \) ${y}^2={x}^{3}+i{x}^{2}+\left(-4i+36\right){x}-72i-12$
12800.3-c3 12800.3-c \(\Q(\sqrt{-1}) \) \( 2^{9} \cdot 5^{2} \) 0 $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $3.506835645$ 1.753417822 \( 128 \) \( \bigl[0\) , \( i\) , \( 0\) , \( i + 1\) , \( -2 i - 2\bigr] \) ${y}^2={x}^{3}+i{x}^{2}+\left(i+1\right){x}-2i-2$
12800.3-c4 12800.3-c \(\Q(\sqrt{-1}) \) \( 2^{9} \cdot 5^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $1.753417822$ 1.753417822 \( 10976 \) \( \bigl[0\) , \( -i\) , \( 0\) , \( -14 i - 19\) , \( 39 i + 18\bigr] \) ${y}^2={x}^{3}-i{x}^{2}+\left(-14i-19\right){x}+39i+18$
12800.3-d1 12800.3-d \(\Q(\sqrt{-1}) \) \( 2^{9} \cdot 5^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $2.550722046$ $1.320233139$ 3.367547776 \( -\frac{2150376}{5} a - \frac{2556152}{5} \) \( \bigl[0\) , \( -i - 1\) , \( 0\) , \( -70 i - 47\) , \( 339 i + 21\bigr] \) ${y}^2={x}^{3}+\left(-i-1\right){x}^{2}+\left(-70i-47\right){x}+339i+21$
12800.3-d2 12800.3-d \(\Q(\sqrt{-1}) \) \( 2^{9} \cdot 5^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $0.637680511$ $1.320233139$ 3.367547776 \( \frac{389056}{5} a - \frac{211168}{5} \) \( \bigl[0\) , \( i + 1\) , \( 0\) , \( -60 i + 8\) , \( 84 i - 132\bigr] \) ${y}^2={x}^{3}+\left(i+1\right){x}^{2}+\left(-60i+8\right){x}+84i-132$
12800.3-d3 12800.3-d \(\Q(\sqrt{-1}) \) \( 2^{9} \cdot 5^{2} \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $1.275361023$ $2.640466279$ 3.367547776 \( -\frac{13056}{25} a + \frac{27008}{25} \) \( \bigl[0\) , \( -i - 1\) , \( 0\) , \( -5 i - 2\) , \( 6 i + 2\bigr] \) ${y}^2={x}^{3}+\left(-i-1\right){x}^{2}+\left(-5i-2\right){x}+6i+2$
12800.3-d4 12800.3-d \(\Q(\sqrt{-1}) \) \( 2^{9} \cdot 5^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $0.637680511$ $1.320233139$ 3.367547776 \( \frac{615304}{625} a + \frac{1440328}{625} \) \( \bigl[0\) , \( -i - 1\) , \( 0\) , \( 30 i + 3\) , \( 23 i + 33\bigr] \) ${y}^2={x}^{3}+\left(-i-1\right){x}^{2}+\left(30i+3\right){x}+23i+33$
  displayed columns for results

  *The rank, regulator and analytic order of Ш are not known for all curves in the database; curves for which these are unknown will not appear in searches specifying one of these quantities.