Learn more

The results below are complete, since the LMFDB contains all elliptic curves with conductor norm at most 100000 over imaginary quadratic fields with absolute discriminant 4

Note: The completeness Only modular elliptic curves are included

Refine search


Results (12 matches)

  displayed columns for results
Label Class Base field Conductor norm Rank Torsion CM Sato-Tate Regulator Period Leading coeff j-invariant Weierstrass coefficients Weierstrass equation
1024.1-CMb1 1024.1-CMb \(\Q(\sqrt{-1}) \) \( 2^{10} \) 0 $\Z/2\Z\oplus\Z/2\Z$ $-4$ $\mathrm{U}(1)$ $1$ $4.861490513$ 1.215372628 \( 1728 \) \( \bigl[0\) , \( 0\) , \( 0\) , \( 2 i\) , \( 0\bigr] \) ${y}^2={x}^{3}+2i{x}$
1024.1-CMb2 1024.1-CMb \(\Q(\sqrt{-1}) \) \( 2^{10} \) 0 $\Z/2\Z$ $-16$ $\mathrm{U}(1)$ $1$ $2.430745256$ 1.215372628 \( 287496 \) \( \bigl[0\) , \( 0\) , \( 0\) , \( 22 i\) , \( -28 i - 28\bigr] \) ${y}^2={x}^{3}+22i{x}-28i-28$
1024.1-CMa1 1024.1-CMa \(\Q(\sqrt{-1}) \) \( 2^{10} \) 0 $\Z/2\Z\oplus\Z/2\Z$ $-4$ $\mathrm{U}(1)$ $1$ $4.861490513$ 1.215372628 \( 1728 \) \( \bigl[0\) , \( 0\) , \( 0\) , \( -2 i\) , \( 0\bigr] \) ${y}^2={x}^{3}-2i{x}$
1024.1-CMa2 1024.1-CMa \(\Q(\sqrt{-1}) \) \( 2^{10} \) 0 $\Z/2\Z$ $-16$ $\mathrm{U}(1)$ $1$ $2.430745256$ 1.215372628 \( 287496 \) \( \bigl[0\) , \( 0\) , \( 0\) , \( -22 i\) , \( 28 i - 28\bigr] \) ${y}^2={x}^{3}-22i{x}+28i-28$
1024.1-a1 1024.1-a \(\Q(\sqrt{-1}) \) \( 2^{10} \) $1$ $\Z/4\Z$ $\mathrm{SU}(2)$ $0.864662329$ $2.772397005$ 1.198593625 \( -118792 a - 11528 \) \( \bigl[0\) , \( -1\) , \( 0\) , \( 10 i + 11\) , \( 6 i - 23\bigr] \) ${y}^2={x}^{3}-{x}^{2}+\left(10i+11\right){x}+6i-23$
1024.1-a2 1024.1-a \(\Q(\sqrt{-1}) \) \( 2^{10} \) $1$ $\Z/4\Z$ $\mathrm{SU}(2)$ $0.864662329$ $2.772397005$ 1.198593625 \( 118792 a - 11528 \) \( \bigl[0\) , \( 1\) , \( 0\) , \( -10 i + 11\) , \( 6 i + 23\bigr] \) ${y}^2={x}^{3}+{x}^{2}+\left(-10i+11\right){x}+6i+23$
1024.1-a3 1024.1-a \(\Q(\sqrt{-1}) \) \( 2^{10} \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $0.432331164$ $5.544794010$ 1.198593625 \( 128 \) \( \bigl[0\) , \( 1\) , \( 0\) , \( 1\) , \( 1\bigr] \) ${y}^2={x}^{3}+{x}^{2}+{x}+1$
1024.1-a4 1024.1-a \(\Q(\sqrt{-1}) \) \( 2^{10} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $0.216165582$ $5.544794010$ 1.198593625 \( 10976 \) \( \bigl[0\) , \( i\) , \( 0\) , \( 2\) , \( 2 i\bigr] \) ${y}^2={x}^{3}+i{x}^{2}+2{x}+2i$
1024.1-b1 1024.1-b \(\Q(\sqrt{-1}) \) \( 2^{10} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $2.772397005$ 1.386198502 \( -118792 a - 11528 \) \( \bigl[0\) , \( -i\) , \( 0\) , \( -10 i - 11\) , \( 23 i + 6\bigr] \) ${y}^2={x}^{3}-i{x}^{2}+\left(-10i-11\right){x}+23i+6$
1024.1-b2 1024.1-b \(\Q(\sqrt{-1}) \) \( 2^{10} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $2.772397005$ 1.386198502 \( 118792 a - 11528 \) \( \bigl[0\) , \( i\) , \( 0\) , \( 10 i - 11\) , \( -23 i + 6\bigr] \) ${y}^2={x}^{3}+i{x}^{2}+\left(10i-11\right){x}-23i+6$
1024.1-b3 1024.1-b \(\Q(\sqrt{-1}) \) \( 2^{10} \) 0 $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $5.544794010$ 1.386198502 \( 128 \) \( \bigl[0\) , \( i\) , \( 0\) , \( -1\) , \( -i\bigr] \) ${y}^2={x}^{3}+i{x}^{2}-{x}-i$
1024.1-b4 1024.1-b \(\Q(\sqrt{-1}) \) \( 2^{10} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $5.544794010$ 1.386198502 \( 10976 \) \( \bigl[0\) , \( -1\) , \( 0\) , \( -2\) , \( 2\bigr] \) ${y}^2={x}^{3}-{x}^{2}-2{x}+2$
  displayed columns for results

  *The rank, regulator and analytic order of Ш are not known for all curves in the database; curves for which these are unknown will not appear in searches specifying one of these quantities.