Learn more

Refine search


Results (14 matches)

  displayed columns for results
Label Class Base field Conductor norm Rank Torsion CM Sato-Tate Regulator Period Leading coeff j-invariant Weierstrass coefficients Weierstrass equation
9984.1-a1 9984.1-a Q(3)\Q(\sqrt{-3}) 28313 2^{8} \cdot 3 \cdot 13 11 Z/4Z\Z/4\Z SU(2)\mathrm{SU}(2) 1.7536933981.753693398 1.8937505251.893750525 1.917413612 17827436839a11452648013 \frac{178274368}{39} a - \frac{114526480}{13} [0 \bigl[0 , a a , 0 0 , 16a48 -16 a - 48 , 92a116] -92 a - 116\bigr] y2=x3+ax2+(16a48)x92a116{y}^2={x}^{3}+a{x}^{2}+\left(-16a-48\right){x}-92a-116
9984.1-a2 9984.1-a Q(3)\Q(\sqrt{-3}) 28313 2^{8} \cdot 3 \cdot 13 11 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 0.4384233490.438423349 1.8937505251.893750525 1.917413612 125198721053a4457840351 \frac{12519872}{1053} a - \frac{4457840}{351} [0 \bigl[0 , a a , 0 0 , 21a+2 -21 a + 2 , 35a21] 35 a - 21\bigr] y2=x3+ax2+(21a+2)x+35a21{y}^2={x}^{3}+a{x}^{2}+\left(-21a+2\right){x}+35a-21
9984.1-a3 9984.1-a Q(3)\Q(\sqrt{-3}) 28313 2^{8} \cdot 3 \cdot 13 11 Z/4Z\Z/4\Z SU(2)\mathrm{SU}(2) 0.4384233490.438423349 1.8937505251.893750525 1.917413612 16556249685683a3280750428561 \frac{165562496}{85683} a - \frac{32807504}{28561} [0 \bigl[0 , a a , 0 0 , 14a3 14 a - 3 , 11a14] -11 a - 14\bigr] y2=x3+ax2+(14a3)x11a14{y}^2={x}^{3}+a{x}^{2}+\left(14a-3\right){x}-11a-14
9984.1-a4 9984.1-a Q(3)\Q(\sqrt{-3}) 28313 2^{8} \cdot 3 \cdot 13 11 Z/2ZZ/2Z\Z/2\Z\oplus\Z/2\Z SU(2)\mathrm{SU}(2) 0.8768466990.876846699 3.7875010513.787501051 1.917413612 45547521521a+22446081521 -\frac{4554752}{1521} a + \frac{2244608}{1521} [0 \bigl[0 , a a , 0 0 , a3 -a - 3 , 2a2] -2 a - 2\bigr] y2=x3+ax2+(a3)x2a2{y}^2={x}^{3}+a{x}^{2}+\left(-a-3\right){x}-2a-2
9984.1-b1 9984.1-b Q(3)\Q(\sqrt{-3}) 28313 2^{8} \cdot 3 \cdot 13 11 Z/4Z\Z/4\Z SU(2)\mathrm{SU}(2) 2.8968572982.896857298 0.6283857530.628385753 2.101952031 1028251680722507a94596173570507 -\frac{1028251680722}{507} a - \frac{94596173570}{507} [0 \bigl[0 , a a , 0 0 , 42a+981 -42 a + 981 , 13529a5938] 13529 a - 5938\bigr] y2=x3+ax2+(42a+981)x+13529a5938{y}^2={x}^{3}+a{x}^{2}+\left(-42a+981\right){x}+13529a-5938
9984.1-b2 9984.1-b Q(3)\Q(\sqrt{-3}) 28313 2^{8} \cdot 3 \cdot 13 11 Z/2ZZ/2Z\Z/2\Z\oplus\Z/2\Z SU(2)\mathrm{SU}(2) 0.7242143240.724214324 2.5135430142.513543014 2.101952031 525281521a+5072507 -\frac{52528}{1521} a + \frac{5072}{507} [0 \bigl[0 , a a , 0 0 , 2a+1 -2 a + 1 , 9a6] 9 a - 6\bigr] y2=x3+ax2+(2a+1)x+9a6{y}^2={x}^{3}+a{x}^{2}+\left(-2a+1\right){x}+9a-6
9984.1-b3 9984.1-b Q(3)\Q(\sqrt{-3}) 28313 2^{8} \cdot 3 \cdot 13 11 Z/4Z\Z/4\Z SU(2)\mathrm{SU}(2) 0.7242143240.724214324 0.6283857530.628385753 2.101952031 24579917370262447192163a+34681815449302447192163 \frac{2457991737026}{2447192163} a + \frac{3468181544930}{2447192163} [0 \bigl[0 , a a , 0 0 , 38a+101 38 a + 101 , 215a+382] -215 a + 382\bigr] y2=x3+ax2+(38a+101)x215a+382{y}^2={x}^{3}+a{x}^{2}+\left(38a+101\right){x}-215a+382
9984.1-b4 9984.1-b Q(3)\Q(\sqrt{-3}) 28313 2^{8} \cdot 3 \cdot 13 11 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 0.3621071620.362107162 5.0270860285.027086028 2.101952031 53939239a+47820839 \frac{539392}{39} a + \frac{478208}{39} [0 \bigl[0 , a a , 0 0 , 3a4 3 a - 4 , 2a3] 2 a - 3\bigr] y2=x3+ax2+(3a4)x+2a3{y}^2={x}^{3}+a{x}^{2}+\left(3a-4\right){x}+2a-3
9984.1-b5 9984.1-b Q(3)\Q(\sqrt{-3}) 28313 2^{8} \cdot 3 \cdot 13 11 Z/2ZZ/4Z\Z/2\Z\oplus\Z/4\Z SU(2)\mathrm{SU}(2) 1.4484286491.448428649 1.2567715071.256771507 2.101952031 403563823685683a+392632086485683 -\frac{4035638236}{85683} a + \frac{3926320864}{85683} [0 \bigl[0 , a a , 0 0 , 2a+61 -2 a + 61 , 225a90] 225 a - 90\bigr] y2=x3+ax2+(2a+61)x+225a90{y}^2={x}^{3}+a{x}^{2}+\left(-2a+61\right){x}+225a-90
9984.1-b6 9984.1-b Q(3)\Q(\sqrt{-3}) 28313 2^{8} \cdot 3 \cdot 13 11 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 0.3621071620.362107162 1.2567715071.256771507 2.101952031 896725481053a+925965921053 \frac{89672548}{1053} a + \frac{92596592}{1053} [0 \bigl[0 , a a , 0 0 , 82a+21 -82 a + 21 , 241a194] 241 a - 194\bigr] y2=x3+ax2+(82a+21)x+241a194{y}^2={x}^{3}+a{x}^{2}+\left(-82a+21\right){x}+241a-194
9984.1-c1 9984.1-c Q(3)\Q(\sqrt{-3}) 28313 2^{8} \cdot 3 \cdot 13 0 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 11 1.8937505251.893750525 2.186714751 17827436839a11452648013 \frac{178274368}{39} a - \frac{114526480}{13} [0 \bigl[0 , a -a , 0 0 , 16a48 -16 a - 48 , 92a+116] 92 a + 116\bigr] y2=x3ax2+(16a48)x+92a+116{y}^2={x}^{3}-a{x}^{2}+\left(-16a-48\right){x}+92a+116
9984.1-c2 9984.1-c Q(3)\Q(\sqrt{-3}) 28313 2^{8} \cdot 3 \cdot 13 0 Z/4Z\Z/4\Z SU(2)\mathrm{SU}(2) 11 1.8937505251.893750525 2.186714751 125198721053a4457840351 \frac{12519872}{1053} a - \frac{4457840}{351} [0 \bigl[0 , a -a , 0 0 , 21a+2 -21 a + 2 , 35a+21] -35 a + 21\bigr] y2=x3ax2+(21a+2)x35a+21{y}^2={x}^{3}-a{x}^{2}+\left(-21a+2\right){x}-35a+21
9984.1-c3 9984.1-c Q(3)\Q(\sqrt{-3}) 28313 2^{8} \cdot 3 \cdot 13 0 Z/4Z\Z/4\Z SU(2)\mathrm{SU}(2) 11 1.8937505251.893750525 2.186714751 16556249685683a3280750428561 \frac{165562496}{85683} a - \frac{32807504}{28561} [0 \bigl[0 , a -a , 0 0 , 14a3 14 a - 3 , 11a+14] 11 a + 14\bigr] y2=x3ax2+(14a3)x+11a+14{y}^2={x}^{3}-a{x}^{2}+\left(14a-3\right){x}+11a+14
9984.1-c4 9984.1-c Q(3)\Q(\sqrt{-3}) 28313 2^{8} \cdot 3 \cdot 13 0 Z/2ZZ/2Z\Z/2\Z\oplus\Z/2\Z SU(2)\mathrm{SU}(2) 11 3.7875010513.787501051 2.186714751 45547521521a+22446081521 -\frac{4554752}{1521} a + \frac{2244608}{1521} [0 \bigl[0 , a -a , 0 0 , a3 -a - 3 , 2a+2] 2 a + 2\bigr] y2=x3ax2+(a3)x+2a+2{y}^2={x}^{3}-a{x}^{2}+\left(-a-3\right){x}+2a+2
  displayed columns for results

  *The rank, regulator and analytic order of Ш are not known for all curves in the database; curves for which these are unknown will not appear in searches specifying one of these quantities.