Learn more

The results below are complete, since the LMFDB contains all elliptic curves with conductor norm at most 150000 over imaginary quadratic fields with absolute discriminant 3

Note: The completeness Only modular elliptic curves are included

Refine search


Results (14 matches)

  displayed columns for results
Label Class Base field Conductor norm Rank Torsion CM Sato-Tate Regulator Period Leading coeff j-invariant Weierstrass coefficients Weierstrass equation
53361.3-a1 53361.3-a \(\Q(\sqrt{-3}) \) \( 3^{2} \cdot 7^{2} \cdot 11^{2} \) $1$ $\mathsf{trivial}$ $\mathrm{SU}(2)$ $0.174978614$ $2.022470152$ 3.269086780 \( \frac{210097}{891} a + \frac{1457662}{891} \) \( \bigl[a + 1\) , \( a + 1\) , \( 1\) , \( -3 a + 12\) , \( -2 a + 10\bigr] \) ${y}^2+\left(a+1\right){x}{y}+{y}={x}^{3}+\left(a+1\right){x}^{2}+\left(-3a+12\right){x}-2a+10$
53361.3-b1 53361.3-b \(\Q(\sqrt{-3}) \) \( 3^{2} \cdot 7^{2} \cdot 11^{2} \) 0 $\Z/3\Z$ $\mathrm{SU}(2)$ $1$ $0.940340520$ 2.171623411 \( -\frac{2003475}{1331} a + \frac{1869918}{1331} \) \( \bigl[a\) , \( -a + 1\) , \( a\) , \( -17 a + 56\) , \( 74 a + 88\bigr] \) ${y}^2+a{x}{y}+a{y}={x}^{3}+\left(-a+1\right){x}^{2}+\left(-17a+56\right){x}+74a+88$
53361.3-b2 53361.3-b \(\Q(\sqrt{-3}) \) \( 3^{2} \cdot 7^{2} \cdot 11^{2} \) 0 $\Z/3\Z$ $\mathrm{SU}(2)$ $1$ $2.821021562$ 2.171623411 \( -\frac{1176039}{11} a + \frac{1096065}{11} \) \( \bigl[a\) , \( -a + 1\) , \( a\) , \( -7 a - 9\) , \( 15 a + 6\bigr] \) ${y}^2+a{x}{y}+a{y}={x}^{3}+\left(-a+1\right){x}^{2}+\left(-7a-9\right){x}+15a+6$
53361.3-c1 53361.3-c \(\Q(\sqrt{-3}) \) \( 3^{2} \cdot 7^{2} \cdot 11^{2} \) $1$ $\mathsf{trivial}$ $\mathrm{SU}(2)$ $10.54640577$ $0.080807988$ 3.936299486 \( -\frac{52893159101157376}{11} \) \( \bigl[0\) , \( a + 1\) , \( 1\) , \( 187689 a - 70383\) , \( 16072854 a + 13489487\bigr] \) ${y}^2+{y}={x}^{3}+\left(a+1\right){x}^{2}+\left(187689a-70383\right){x}+16072854a+13489487$
53361.3-c2 53361.3-c \(\Q(\sqrt{-3}) \) \( 3^{2} \cdot 7^{2} \cdot 11^{2} \) $1$ $\mathsf{trivial}$ $\mathrm{SU}(2)$ $2.109281154$ $0.404039943$ 3.936299486 \( -\frac{122023936}{161051} \) \( \bigl[0\) , \( a + 1\) , \( 1\) , \( 249 a - 93\) , \( 1524 a + 1067\bigr] \) ${y}^2+{y}={x}^{3}+\left(a+1\right){x}^{2}+\left(249a-93\right){x}+1524a+1067$
53361.3-c3 53361.3-c \(\Q(\sqrt{-3}) \) \( 3^{2} \cdot 7^{2} \cdot 11^{2} \) $1$ $\mathsf{trivial}$ $\mathrm{SU}(2)$ $0.421856230$ $2.020199715$ 3.936299486 \( -\frac{4096}{11} \) \( \bigl[0\) , \( a + 1\) , \( 1\) , \( 9 a - 3\) , \( -6 a - 13\bigr] \) ${y}^2+{y}={x}^{3}+\left(a+1\right){x}^{2}+\left(9a-3\right){x}-6a-13$
53361.3-d1 53361.3-d \(\Q(\sqrt{-3}) \) \( 3^{2} \cdot 7^{2} \cdot 11^{2} \) 0 $\mathsf{trivial}$ $\mathrm{SU}(2)$ $1$ $0.615597373$ 1.421661237 \( -\frac{2003475}{1331} a + \frac{1869918}{1331} \) \( \bigl[a\) , \( a\) , \( a\) , \( -121 a + 12\) , \( 500 a + 1\bigr] \) ${y}^2+a{x}{y}+a{y}={x}^{3}+a{x}^{2}+\left(-121a+12\right){x}+500a+1$
53361.3-d2 53361.3-d \(\Q(\sqrt{-3}) \) \( 3^{2} \cdot 7^{2} \cdot 11^{2} \) 0 $\mathsf{trivial}$ $\mathrm{SU}(2)$ $1$ $0.615597373$ 1.421661237 \( -\frac{1176039}{11} a + \frac{1096065}{11} \) \( \bigl[a\) , \( -a + 1\) , \( 1\) , \( 322 a - 237\) , \( -1953 a + 298\bigr] \) ${y}^2+a{x}{y}+{y}={x}^{3}+\left(-a+1\right){x}^{2}+\left(322a-237\right){x}-1953a+298$
53361.3-e1 53361.3-e \(\Q(\sqrt{-3}) \) \( 3^{2} \cdot 7^{2} \cdot 11^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $0.591437168$ 2.731731268 \( \frac{1797450551}{871563} a - \frac{639516755}{79233} \) \( \bigl[a + 1\) , \( a + 1\) , \( a\) , \( 7 a + 181\) , \( -1119 a + 741\bigr] \) ${y}^2+\left(a+1\right){x}{y}+a{y}={x}^{3}+\left(a+1\right){x}^{2}+\left(7a+181\right){x}-1119a+741$
53361.3-e2 53361.3-e \(\Q(\sqrt{-3}) \) \( 3^{2} \cdot 7^{2} \cdot 11^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $1.182874337$ 2.731731268 \( \frac{332137}{539} a - \frac{2907584}{1617} \) \( \bigl[a + 1\) , \( a + 1\) , \( a\) , \( 37 a - 14\) , \( -45 a - 66\bigr] \) ${y}^2+\left(a+1\right){x}{y}+a{y}={x}^{3}+\left(a+1\right){x}^{2}+\left(37a-14\right){x}-45a-66$
53361.3-f1 53361.3-f \(\Q(\sqrt{-3}) \) \( 3^{2} \cdot 7^{2} \cdot 11^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $4.324920014$ $0.223801208$ 4.470641716 \( \frac{9090072503}{5845851} \) \( \bigl[a + 1\) , \( a + 1\) , \( 1\) , \( 393 a + 651\) , \( -1469 a - 1889\bigr] \) ${y}^2+\left(a+1\right){x}{y}+{y}={x}^{3}+\left(a+1\right){x}^{2}+\left(393a+651\right){x}-1469a-1889$
53361.3-f2 53361.3-f \(\Q(\sqrt{-3}) \) \( 3^{2} \cdot 7^{2} \cdot 11^{2} \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $2.162460007$ $0.447602416$ 4.470641716 \( \frac{169112377}{88209} \) \( \bigl[a + 1\) , \( a + 1\) , \( 1\) , \( -102 a - 174\) , \( -479 a - 239\bigr] \) ${y}^2+\left(a+1\right){x}{y}+{y}={x}^{3}+\left(a+1\right){x}^{2}+\left(-102a-174\right){x}-479a-239$
53361.3-f3 53361.3-f \(\Q(\sqrt{-3}) \) \( 3^{2} \cdot 7^{2} \cdot 11^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $1.081230003$ $0.895204832$ 4.470641716 \( \frac{30664297}{297} \) \( \bigl[a + 1\) , \( a + 1\) , \( 1\) , \( -57 a - 99\) , \( 271 a + 325\bigr] \) ${y}^2+\left(a+1\right){x}{y}+{y}={x}^{3}+\left(a+1\right){x}^{2}+\left(-57a-99\right){x}+271a+325$
53361.3-f4 53361.3-f \(\Q(\sqrt{-3}) \) \( 3^{2} \cdot 7^{2} \cdot 11^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $4.324920014$ $0.223801208$ 4.470641716 \( \frac{347873904937}{395307} \) \( \bigl[a + 1\) , \( a + 1\) , \( 1\) , \( -1317 a - 2199\) , \( -43409 a - 34745\bigr] \) ${y}^2+\left(a+1\right){x}{y}+{y}={x}^{3}+\left(a+1\right){x}^{2}+\left(-1317a-2199\right){x}-43409a-34745$
  displayed columns for results

  *The rank, regulator and analytic order of Ш are not known for all curves in the database; curves for which these are unknown will not appear in searches specifying one of these quantities.