| Label |
Class |
Class size |
Class degree |
Base field |
Field degree |
Field signature |
Conductor |
Conductor norm |
Discriminant norm |
Root analytic conductor |
Bad primes |
Rank |
Torsion |
CM |
CM |
Sato-Tate |
$\Q$-curve |
Base change |
Semistable |
Potentially good |
Nonmax $\ell$ |
mod-$\ell$ images |
$Ш_{\textrm{an}}$ |
Tamagawa |
Regulator |
Period |
Leading coeff |
j-invariant |
Weierstrass coefficients |
Weierstrass equation |
| 53361.3-a1 |
53361.3-a |
$1$ |
$1$ |
\(\Q(\sqrt{-3}) \) |
$2$ |
$[0, 1]$ |
53361.3 |
\( 3^{2} \cdot 7^{2} \cdot 11^{2} \) |
\( 3^{13} \cdot 7^{2} \cdot 11^{2} \) |
$2.35237$ |
$(-2a+1), (3a-2), (11)$ |
$1$ |
$\mathsf{trivial}$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
|
$1$ |
\( 2^{2} \) |
$0.174978614$ |
$2.022470152$ |
3.269086780 |
\( \frac{210097}{891} a + \frac{1457662}{891} \) |
\( \bigl[a + 1\) , \( a + 1\) , \( 1\) , \( -3 a + 12\) , \( -2 a + 10\bigr] \) |
${y}^2+\left(a+1\right){x}{y}+{y}={x}^{3}+\left(a+1\right){x}^{2}+\left(-3a+12\right){x}-2a+10$ |
| 53361.3-b1 |
53361.3-b |
$2$ |
$3$ |
\(\Q(\sqrt{-3}) \) |
$2$ |
$[0, 1]$ |
53361.3 |
\( 3^{2} \cdot 7^{2} \cdot 11^{2} \) |
\( 3^{9} \cdot 7^{4} \cdot 11^{6} \) |
$2.35237$ |
$(-2a+1), (3a-2), (11)$ |
0 |
$\Z/3\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$3$ |
3B.1.1[2] |
$1$ |
\( 2 \cdot 3^{2} \) |
$1$ |
$0.940340520$ |
2.171623411 |
\( -\frac{2003475}{1331} a + \frac{1869918}{1331} \) |
\( \bigl[a\) , \( -a + 1\) , \( a\) , \( -17 a + 56\) , \( 74 a + 88\bigr] \) |
${y}^2+a{x}{y}+a{y}={x}^{3}+\left(-a+1\right){x}^{2}+\left(-17a+56\right){x}+74a+88$ |
| 53361.3-b2 |
53361.3-b |
$2$ |
$3$ |
\(\Q(\sqrt{-3}) \) |
$2$ |
$[0, 1]$ |
53361.3 |
\( 3^{2} \cdot 7^{2} \cdot 11^{2} \) |
\( 3^{3} \cdot 7^{4} \cdot 11^{2} \) |
$2.35237$ |
$(-2a+1), (3a-2), (11)$ |
0 |
$\Z/3\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$3$ |
3B.1.1[2] |
$1$ |
\( 2 \cdot 3 \) |
$1$ |
$2.821021562$ |
2.171623411 |
\( -\frac{1176039}{11} a + \frac{1096065}{11} \) |
\( \bigl[a\) , \( -a + 1\) , \( a\) , \( -7 a - 9\) , \( 15 a + 6\bigr] \) |
${y}^2+a{x}{y}+a{y}={x}^{3}+\left(-a+1\right){x}^{2}+\left(-7a-9\right){x}+15a+6$ |
| 53361.3-c1 |
53361.3-c |
$3$ |
$25$ |
\(\Q(\sqrt{-3}) \) |
$2$ |
$[0, 1]$ |
53361.3 |
\( 3^{2} \cdot 7^{2} \cdot 11^{2} \) |
\( 3^{6} \cdot 7^{6} \cdot 11^{2} \) |
$2.35237$ |
$(-2a+1), (3a-2), (11)$ |
$1$ |
$\mathsf{trivial}$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
$5$ |
5B.4.2 |
$1$ |
\( 2 \) |
$10.54640577$ |
$0.080807988$ |
3.936299486 |
\( -\frac{52893159101157376}{11} \) |
\( \bigl[0\) , \( a + 1\) , \( 1\) , \( 187689 a - 70383\) , \( 16072854 a + 13489487\bigr] \) |
${y}^2+{y}={x}^{3}+\left(a+1\right){x}^{2}+\left(187689a-70383\right){x}+16072854a+13489487$ |
| 53361.3-c2 |
53361.3-c |
$3$ |
$25$ |
\(\Q(\sqrt{-3}) \) |
$2$ |
$[0, 1]$ |
53361.3 |
\( 3^{2} \cdot 7^{2} \cdot 11^{2} \) |
\( 3^{6} \cdot 7^{6} \cdot 11^{10} \) |
$2.35237$ |
$(-2a+1), (3a-2), (11)$ |
$1$ |
$\mathsf{trivial}$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
$5$ |
5Cs.4.1 |
$1$ |
\( 2 \) |
$2.109281154$ |
$0.404039943$ |
3.936299486 |
\( -\frac{122023936}{161051} \) |
\( \bigl[0\) , \( a + 1\) , \( 1\) , \( 249 a - 93\) , \( 1524 a + 1067\bigr] \) |
${y}^2+{y}={x}^{3}+\left(a+1\right){x}^{2}+\left(249a-93\right){x}+1524a+1067$ |
| 53361.3-c3 |
53361.3-c |
$3$ |
$25$ |
\(\Q(\sqrt{-3}) \) |
$2$ |
$[0, 1]$ |
53361.3 |
\( 3^{2} \cdot 7^{2} \cdot 11^{2} \) |
\( 3^{6} \cdot 7^{6} \cdot 11^{2} \) |
$2.35237$ |
$(-2a+1), (3a-2), (11)$ |
$1$ |
$\mathsf{trivial}$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
$5$ |
5B.4.1 |
$1$ |
\( 2 \) |
$0.421856230$ |
$2.020199715$ |
3.936299486 |
\( -\frac{4096}{11} \) |
\( \bigl[0\) , \( a + 1\) , \( 1\) , \( 9 a - 3\) , \( -6 a - 13\bigr] \) |
${y}^2+{y}={x}^{3}+\left(a+1\right){x}^{2}+\left(9a-3\right){x}-6a-13$ |
| 53361.3-d1 |
53361.3-d |
$2$ |
$3$ |
\(\Q(\sqrt{-3}) \) |
$2$ |
$[0, 1]$ |
53361.3 |
\( 3^{2} \cdot 7^{2} \cdot 11^{2} \) |
\( 3^{3} \cdot 7^{10} \cdot 11^{6} \) |
$2.35237$ |
$(-2a+1), (3a-2), (11)$ |
0 |
$\mathsf{trivial}$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$3$ |
3B[2] |
$1$ |
\( 2 \) |
$1$ |
$0.615597373$ |
1.421661237 |
\( -\frac{2003475}{1331} a + \frac{1869918}{1331} \) |
\( \bigl[a\) , \( a\) , \( a\) , \( -121 a + 12\) , \( 500 a + 1\bigr] \) |
${y}^2+a{x}{y}+a{y}={x}^{3}+a{x}^{2}+\left(-121a+12\right){x}+500a+1$ |
| 53361.3-d2 |
53361.3-d |
$2$ |
$3$ |
\(\Q(\sqrt{-3}) \) |
$2$ |
$[0, 1]$ |
53361.3 |
\( 3^{2} \cdot 7^{2} \cdot 11^{2} \) |
\( 3^{9} \cdot 7^{10} \cdot 11^{2} \) |
$2.35237$ |
$(-2a+1), (3a-2), (11)$ |
0 |
$\mathsf{trivial}$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$3$ |
3B[2] |
$1$ |
\( 2 \) |
$1$ |
$0.615597373$ |
1.421661237 |
\( -\frac{1176039}{11} a + \frac{1096065}{11} \) |
\( \bigl[a\) , \( -a + 1\) , \( 1\) , \( 322 a - 237\) , \( -1953 a + 298\bigr] \) |
${y}^2+a{x}{y}+{y}={x}^{3}+\left(-a+1\right){x}^{2}+\left(322a-237\right){x}-1953a+298$ |
| 53361.3-e1 |
53361.3-e |
$2$ |
$2$ |
\(\Q(\sqrt{-3}) \) |
$2$ |
$[0, 1]$ |
53361.3 |
\( 3^{2} \cdot 7^{2} \cdot 11^{2} \) |
\( 3^{7} \cdot 7^{10} \cdot 11^{4} \) |
$2.35237$ |
$(-2a+1), (3a-2), (11)$ |
0 |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2$ |
2B |
$1$ |
\( 2^{4} \) |
$1$ |
$0.591437168$ |
2.731731268 |
\( \frac{1797450551}{871563} a - \frac{639516755}{79233} \) |
\( \bigl[a + 1\) , \( a + 1\) , \( a\) , \( 7 a + 181\) , \( -1119 a + 741\bigr] \) |
${y}^2+\left(a+1\right){x}{y}+a{y}={x}^{3}+\left(a+1\right){x}^{2}+\left(7a+181\right){x}-1119a+741$ |
| 53361.3-e2 |
53361.3-e |
$2$ |
$2$ |
\(\Q(\sqrt{-3}) \) |
$2$ |
$[0, 1]$ |
53361.3 |
\( 3^{2} \cdot 7^{2} \cdot 11^{2} \) |
\( 3^{8} \cdot 7^{8} \cdot 11^{2} \) |
$2.35237$ |
$(-2a+1), (3a-2), (11)$ |
0 |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2$ |
2B |
$1$ |
\( 2^{3} \) |
$1$ |
$1.182874337$ |
2.731731268 |
\( \frac{332137}{539} a - \frac{2907584}{1617} \) |
\( \bigl[a + 1\) , \( a + 1\) , \( a\) , \( 37 a - 14\) , \( -45 a - 66\bigr] \) |
${y}^2+\left(a+1\right){x}{y}+a{y}={x}^{3}+\left(a+1\right){x}^{2}+\left(37a-14\right){x}-45a-66$ |
| 53361.3-f1 |
53361.3-f |
$4$ |
$4$ |
\(\Q(\sqrt{-3}) \) |
$2$ |
$[0, 1]$ |
53361.3 |
\( 3^{2} \cdot 7^{2} \cdot 11^{2} \) |
\( 3^{30} \cdot 7^{6} \cdot 11^{2} \) |
$2.35237$ |
$(-2a+1), (3a-2), (11)$ |
$1$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
$2$ |
2B |
$1$ |
\( 2^{3} \) |
$4.324920014$ |
$0.223801208$ |
4.470641716 |
\( \frac{9090072503}{5845851} \) |
\( \bigl[a + 1\) , \( a + 1\) , \( 1\) , \( 393 a + 651\) , \( -1469 a - 1889\bigr] \) |
${y}^2+\left(a+1\right){x}{y}+{y}={x}^{3}+\left(a+1\right){x}^{2}+\left(393a+651\right){x}-1469a-1889$ |
| 53361.3-f2 |
53361.3-f |
$4$ |
$4$ |
\(\Q(\sqrt{-3}) \) |
$2$ |
$[0, 1]$ |
53361.3 |
\( 3^{2} \cdot 7^{2} \cdot 11^{2} \) |
\( 3^{18} \cdot 7^{6} \cdot 11^{4} \) |
$2.35237$ |
$(-2a+1), (3a-2), (11)$ |
$1$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
$2$ |
2Cs |
$1$ |
\( 2^{5} \) |
$2.162460007$ |
$0.447602416$ |
4.470641716 |
\( \frac{169112377}{88209} \) |
\( \bigl[a + 1\) , \( a + 1\) , \( 1\) , \( -102 a - 174\) , \( -479 a - 239\bigr] \) |
${y}^2+\left(a+1\right){x}{y}+{y}={x}^{3}+\left(a+1\right){x}^{2}+\left(-102a-174\right){x}-479a-239$ |
| 53361.3-f3 |
53361.3-f |
$4$ |
$4$ |
\(\Q(\sqrt{-3}) \) |
$2$ |
$[0, 1]$ |
53361.3 |
\( 3^{2} \cdot 7^{2} \cdot 11^{2} \) |
\( 3^{12} \cdot 7^{6} \cdot 11^{2} \) |
$2.35237$ |
$(-2a+1), (3a-2), (11)$ |
$1$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
$2$ |
2B |
$1$ |
\( 2^{3} \) |
$1.081230003$ |
$0.895204832$ |
4.470641716 |
\( \frac{30664297}{297} \) |
\( \bigl[a + 1\) , \( a + 1\) , \( 1\) , \( -57 a - 99\) , \( 271 a + 325\bigr] \) |
${y}^2+\left(a+1\right){x}{y}+{y}={x}^{3}+\left(a+1\right){x}^{2}+\left(-57a-99\right){x}+271a+325$ |
| 53361.3-f4 |
53361.3-f |
$4$ |
$4$ |
\(\Q(\sqrt{-3}) \) |
$2$ |
$[0, 1]$ |
53361.3 |
\( 3^{2} \cdot 7^{2} \cdot 11^{2} \) |
\( 3^{12} \cdot 7^{6} \cdot 11^{8} \) |
$2.35237$ |
$(-2a+1), (3a-2), (11)$ |
$1$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
$2$ |
2B |
$1$ |
\( 2^{3} \) |
$4.324920014$ |
$0.223801208$ |
4.470641716 |
\( \frac{347873904937}{395307} \) |
\( \bigl[a + 1\) , \( a + 1\) , \( 1\) , \( -1317 a - 2199\) , \( -43409 a - 34745\bigr] \) |
${y}^2+\left(a+1\right){x}{y}+{y}={x}^{3}+\left(a+1\right){x}^{2}+\left(-1317a-2199\right){x}-43409a-34745$ |
*The rank, regulator and analytic order of Ш are
not known for all curves in the database; curves for which these are
unknown will not appear in searches specifying one of these
quantities.