Learn more

The results below are complete, since the LMFDB contains all elliptic curves with conductor norm at most 150000 over imaginary quadratic fields with absolute discriminant 3

Note: The completeness Only modular elliptic curves are included

Refine search


Results (21 matches)

  displayed columns for results
Label Class Base field Conductor norm Rank Torsion CM Sato-Tate Regulator Period Leading coeff j-invariant Weierstrass coefficients Weierstrass equation
48384.2-a1 48384.2-a \(\Q(\sqrt{-3}) \) \( 2^{8} \cdot 3^{3} \cdot 7 \) $1$ $\mathsf{trivial}$ $\mathrm{SU}(2)$ $0.173851334$ $2.018313476$ 3.241350559 \( -\frac{13096}{7} a + \frac{23186}{7} \) \( \bigl[0\) , \( -a - 1\) , \( 0\) , \( 16 a - 8\) , \( -16 a\bigr] \) ${y}^2={x}^{3}+\left(-a-1\right){x}^{2}+\left(16a-8\right){x}-16a$
48384.2-b1 48384.2-b \(\Q(\sqrt{-3}) \) \( 2^{8} \cdot 3^{3} \cdot 7 \) 0 $\mathsf{trivial}$ $\mathrm{SU}(2)$ $1$ $0.751118604$ 1.734634114 \( -\frac{15182142}{16807} a + \frac{20850726}{16807} \) \( \bigl[0\) , \( 0\) , \( 0\) , \( 81 a - 57\) , \( -84 a - 194\bigr] \) ${y}^2={x}^{3}+\left(81a-57\right){x}-84a-194$
48384.2-c1 48384.2-c \(\Q(\sqrt{-3}) \) \( 2^{8} \cdot 3^{3} \cdot 7 \) $1$ $\mathsf{trivial}$ $\mathrm{SU}(2)$ $1.019258308$ $0.368682494$ 3.471331850 \( -\frac{94629827885}{14} a - \frac{42409905046}{7} \) \( \bigl[0\) , \( -a - 1\) , \( 0\) , \( 3729 a - 2103\) , \( -65721 a - 10368\bigr] \) ${y}^2={x}^{3}+\left(-a-1\right){x}^{2}+\left(3729a-2103\right){x}-65721a-10368$
48384.2-c2 48384.2-c \(\Q(\sqrt{-3}) \) \( 2^{8} \cdot 3^{3} \cdot 7 \) $1$ $\mathsf{trivial}$ $\mathrm{SU}(2)$ $1.019258308$ $0.368682494$ 3.471331850 \( -\frac{2250281123}{896} a - \frac{3901494743}{3584} \) \( \bigl[0\) , \( -a - 1\) , \( 0\) , \( 1329 a + 57\) , \( -2121 a + 20256\bigr] \) ${y}^2={x}^{3}+\left(-a-1\right){x}^{2}+\left(1329a+57\right){x}-2121a+20256$
48384.2-c3 48384.2-c \(\Q(\sqrt{-3}) \) \( 2^{8} \cdot 3^{3} \cdot 7 \) $1$ $\mathsf{trivial}$ $\mathrm{SU}(2)$ $0.339752769$ $1.106047484$ 3.471331850 \( \frac{1598955}{686} a + \frac{947913}{2744} \) \( \bigl[0\) , \( -a - 1\) , \( 0\) , \( 49 a - 23\) , \( -121 a + 32\bigr] \) ${y}^2={x}^{3}+\left(-a-1\right){x}^{2}+\left(49a-23\right){x}-121a+32$
48384.2-c4 48384.2-c \(\Q(\sqrt{-3}) \) \( 2^{8} \cdot 3^{3} \cdot 7 \) $1$ $\mathsf{trivial}$ $\mathrm{SU}(2)$ $0.113250923$ $1.106047484$ 3.471331850 \( -\frac{40743}{14} a + \frac{37395}{14} \) \( \bigl[0\) , \( 0\) , \( 0\) , \( -48 a + 33\) , \( -84 a + 114\bigr] \) ${y}^2={x}^{3}+\left(-48a+33\right){x}-84a+114$
48384.2-c5 48384.2-c \(\Q(\sqrt{-3}) \) \( 2^{8} \cdot 3^{3} \cdot 7 \) $1$ $\mathsf{trivial}$ $\mathrm{SU}(2)$ $1.019258308$ $0.368682494$ 3.471331850 \( \frac{1490704436330}{40353607} a + \frac{1297954794313}{80707214} \) \( \bigl[0\) , \( -a - 1\) , \( 0\) , \( -591 a - 183\) , \( -7257 a + 1440\bigr] \) ${y}^2={x}^{3}+\left(-a-1\right){x}^{2}+\left(-591a-183\right){x}-7257a+1440$
48384.2-d1 48384.2-d \(\Q(\sqrt{-3}) \) \( 2^{8} \cdot 3^{3} \cdot 7 \) $1$ $\mathsf{trivial}$ $\mathrm{SU}(2)$ $0.061116933$ $1.300975585$ 3.672485281 \( -\frac{15182142}{16807} a + \frac{20850726}{16807} \) \( \bigl[0\) , \( -a - 1\) , \( 0\) , \( -26 a + 19\) , \( -41 a + 25\bigr] \) ${y}^2={x}^{3}+\left(-a-1\right){x}^{2}+\left(-26a+19\right){x}-41a+25$
48384.2-e1 48384.2-e \(\Q(\sqrt{-3}) \) \( 2^{8} \cdot 3^{3} \cdot 7 \) $1$ $\mathsf{trivial}$ $\mathrm{SU}(2)$ $1.917579323$ $0.212858937$ 3.770548955 \( -\frac{94629827885}{14} a - \frac{42409905046}{7} \) \( \bigl[0\) , \( 0\) , \( 0\) , \( -11184 a + 6309\) , \( -265680 a + 420554\bigr] \) ${y}^2={x}^{3}+\left(-11184a+6309\right){x}-265680a+420554$
48384.2-e2 48384.2-e \(\Q(\sqrt{-3}) \) \( 2^{8} \cdot 3^{3} \cdot 7 \) $1$ $\mathsf{trivial}$ $\mathrm{SU}(2)$ $1.917579323$ $0.212858937$ 3.770548955 \( -\frac{2250281123}{896} a - \frac{3901494743}{3584} \) \( \bigl[0\) , \( 0\) , \( 0\) , \( -3984 a - 171\) , \( 115344 a - 52198\bigr] \) ${y}^2={x}^{3}+\left(-3984a-171\right){x}+115344a-52198$
48384.2-e3 48384.2-e \(\Q(\sqrt{-3}) \) \( 2^{8} \cdot 3^{3} \cdot 7 \) $1$ $\mathsf{trivial}$ $\mathrm{SU}(2)$ $0.639193107$ $0.638576813$ 3.770548955 \( \frac{1598955}{686} a + \frac{947913}{2744} \) \( \bigl[0\) , \( 0\) , \( 0\) , \( -144 a + 69\) , \( -240 a + 554\bigr] \) ${y}^2={x}^{3}+\left(-144a+69\right){x}-240a+554$
48384.2-e4 48384.2-e \(\Q(\sqrt{-3}) \) \( 2^{8} \cdot 3^{3} \cdot 7 \) $1$ $\mathsf{trivial}$ $\mathrm{SU}(2)$ $0.213064369$ $1.915730439$ 3.770548955 \( -\frac{40743}{14} a + \frac{37395}{14} \) \( \bigl[0\) , \( 0\) , \( 0\) , \( 16 a - 11\) , \( -16 a - 6\bigr] \) ${y}^2={x}^{3}+\left(16a-11\right){x}-16a-6$
48384.2-e5 48384.2-e \(\Q(\sqrt{-3}) \) \( 2^{8} \cdot 3^{3} \cdot 7 \) $1$ $\mathsf{trivial}$ $\mathrm{SU}(2)$ $1.917579323$ $0.212858937$ 3.770548955 \( \frac{1490704436330}{40353607} a + \frac{1297954794313}{80707214} \) \( \bigl[0\) , \( 0\) , \( 0\) , \( 1776 a + 549\) , \( -13680 a + 41546\bigr] \) ${y}^2={x}^{3}+\left(1776a+549\right){x}-13680a+41546$
48384.2-f1 48384.2-f \(\Q(\sqrt{-3}) \) \( 2^{8} \cdot 3^{3} \cdot 7 \) $1$ $\mathsf{trivial}$ $\mathrm{SU}(2)$ $0.036906548$ $0.751118604$ 3.841161469 \( -\frac{15182142}{16807} a + \frac{20850726}{16807} \) \( \bigl[0\) , \( 0\) , \( 0\) , \( -24 a + 81\) , \( 84 a + 194\bigr] \) ${y}^2={x}^{3}+\left(-24a+81\right){x}+84a+194$
48384.2-g1 48384.2-g \(\Q(\sqrt{-3}) \) \( 2^{8} \cdot 3^{3} \cdot 7 \) $1$ $\mathsf{trivial}$ $\mathrm{SU}(2)$ $0.376189967$ $0.368682494$ 3.843619050 \( -\frac{94629827885}{14} a - \frac{42409905046}{7} \) \( \bigl[0\) , \( a + 1\) , \( 0\) , \( -2102 a - 1625\) , \( 61993 a + 12471\bigr] \) ${y}^2={x}^{3}+\left(a+1\right){x}^{2}+\left(-2102a-1625\right){x}+61993a+12471$
48384.2-g2 48384.2-g \(\Q(\sqrt{-3}) \) \( 2^{8} \cdot 3^{3} \cdot 7 \) $1$ $\mathsf{trivial}$ $\mathrm{SU}(2)$ $0.376189967$ $0.368682494$ 3.843619050 \( -\frac{2250281123}{896} a - \frac{3901494743}{3584} \) \( \bigl[0\) , \( a + 1\) , \( 0\) , \( 58 a - 1385\) , \( 793 a - 20313\bigr] \) ${y}^2={x}^{3}+\left(a+1\right){x}^{2}+\left(58a-1385\right){x}+793a-20313$
48384.2-g3 48384.2-g \(\Q(\sqrt{-3}) \) \( 2^{8} \cdot 3^{3} \cdot 7 \) $1$ $\mathsf{trivial}$ $\mathrm{SU}(2)$ $0.125396655$ $1.106047484$ 3.843619050 \( \frac{1598955}{686} a + \frac{947913}{2744} \) \( \bigl[0\) , \( a + 1\) , \( 0\) , \( -22 a - 25\) , \( 73 a - 9\bigr] \) ${y}^2={x}^{3}+\left(a+1\right){x}^{2}+\left(-22a-25\right){x}+73a-9$
48384.2-g4 48384.2-g \(\Q(\sqrt{-3}) \) \( 2^{8} \cdot 3^{3} \cdot 7 \) $1$ $\mathsf{trivial}$ $\mathrm{SU}(2)$ $0.376189967$ $1.106047484$ 3.843619050 \( -\frac{40743}{14} a + \frac{37395}{14} \) \( \bigl[0\) , \( 0\) , \( 0\) , \( 33 a + 15\) , \( 84 a - 114\bigr] \) ${y}^2={x}^{3}+\left(33a+15\right){x}+84a-114$
48384.2-g5 48384.2-g \(\Q(\sqrt{-3}) \) \( 2^{8} \cdot 3^{3} \cdot 7 \) $1$ $\mathsf{trivial}$ $\mathrm{SU}(2)$ $0.041798885$ $0.368682494$ 3.843619050 \( \frac{1490704436330}{40353607} a + \frac{1297954794313}{80707214} \) \( \bigl[0\) , \( a + 1\) , \( 0\) , \( -182 a + 775\) , \( 7849 a - 1257\bigr] \) ${y}^2={x}^{3}+\left(a+1\right){x}^{2}+\left(-182a+775\right){x}+7849a-1257$
48384.2-h1 48384.2-h \(\Q(\sqrt{-3}) \) \( 2^{8} \cdot 3^{3} \cdot 7 \) $1$ $\mathsf{trivial}$ $\mathrm{SU}(2)$ $0.066556414$ $2.018313476$ 3.722709501 \( -\frac{13096}{7} a + \frac{23186}{7} \) \( \bigl[0\) , \( a + 1\) , \( 0\) , \( -6 a + 15\) , \( 9 a + 15\bigr] \) ${y}^2={x}^{3}+\left(a+1\right){x}^{2}+\left(-6a+15\right){x}+9a+15$
48384.2-i1 48384.2-i \(\Q(\sqrt{-3}) \) \( 2^{8} \cdot 3^{3} \cdot 7 \) 0 $\mathsf{trivial}$ $\mathrm{SU}(2)$ $1$ $1.165273828$ 2.691084634 \( -\frac{13096}{7} a + \frac{23186}{7} \) \( \bigl[0\) , \( 0\) , \( 0\) , \( 21 a - 45\) , \( -72 a + 74\bigr] \) ${y}^2={x}^{3}+\left(21a-45\right){x}-72a+74$
  displayed columns for results

  *The rank, regulator and analytic order of Ш are not known for all curves in the database; curves for which these are unknown will not appear in searches specifying one of these quantities.