Learn more

Refine search


Results (4 matches)

  displayed columns for results
Label Class Base field Conductor norm Rank Torsion CM Sato-Tate Regulator Period Leading coeff j-invariant Weierstrass coefficients Weierstrass equation
23716.1-a1 23716.1-a \(\Q(\sqrt{-3}) \) \( 2^{2} \cdot 7^{2} \cdot 11^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $0.373899960$ 0.863484971 \( \frac{13060888875}{7086244} \) \( \bigl[1\) , \( a\) , \( 0\) , \( -392 a + 245\) , \( 300 a - 555\bigr] \) ${y}^2+{x}{y}={x}^{3}+a{x}^{2}+\left(-392a+245\right){x}+300a-555$
23716.1-a2 23716.1-a \(\Q(\sqrt{-3}) \) \( 2^{2} \cdot 7^{2} \cdot 11^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $0.747799921$ 0.863484971 \( \frac{1108717875}{45056} \) \( \bigl[a\) , \( -1\) , \( 1\) , \( 64 a - 172\) , \( -465 a + 860\bigr] \) ${y}^2+a{x}{y}+{y}={x}^{3}-{x}^{2}+\left(64a-172\right){x}-465a+860$
23716.1-a3 23716.1-a \(\Q(\sqrt{-3}) \) \( 2^{2} \cdot 7^{2} \cdot 11^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $0.747799921$ 0.863484971 \( \frac{2714704875}{21296} \) \( \bigl[1\) , \( a\) , \( 0\) , \( -232 a + 145\) , \( -740 a + 1369\bigr] \) ${y}^2+{x}{y}={x}^{3}+a{x}^{2}+\left(-232a+145\right){x}-740a+1369$
23716.1-a4 23716.1-a \(\Q(\sqrt{-3}) \) \( 2^{2} \cdot 7^{2} \cdot 11^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $0.373899960$ 0.863484971 \( \frac{4406910829875}{7744} \) \( \bigl[a\) , \( -1\) , \( 1\) , \( 1024 a - 2732\) , \( -28625 a + 52956\bigr] \) ${y}^2+a{x}{y}+{y}={x}^{3}-{x}^{2}+\left(1024a-2732\right){x}-28625a+52956$
  displayed columns for results

  *The rank, regulator and analytic order of Ш are not known for all curves in the database; curves for which these are unknown will not appear in searches specifying one of these quantities.