| Label |
Class |
Class size |
Class degree |
Base field |
Field degree |
Field signature |
Conductor |
Conductor norm |
Discriminant norm |
Root analytic conductor |
Bad primes |
Rank |
Torsion |
CM |
CM |
Sato-Tate |
$\Q$-curve |
Base change |
Semistable |
Potentially good |
Nonmax $\ell$ |
mod-$\ell$ images |
$Ш_{\textrm{an}}$ |
Tamagawa |
Regulator |
Period |
Leading coeff |
j-invariant |
Weierstrass coefficients |
Weierstrass equation |
| 22188.2-a1 |
22188.2-a |
$1$ |
$1$ |
\(\Q(\sqrt{-3}) \) |
$2$ |
$[0, 1]$ |
22188.2 |
\( 2^{2} \cdot 3 \cdot 43^{2} \) |
\( 2^{12} \cdot 3^{2} \cdot 43^{2} \) |
$1.88899$ |
$(-2a+1), (-7a+1), (7a-6), (2)$ |
$2$ |
$\mathsf{trivial}$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
✓ |
|
|
|
$1$ |
\( 2^{2} \cdot 3 \) |
$0.017084761$ |
$3.102903120$ |
2.938243290 |
\( \frac{1685159}{8256} \) |
\( \bigl[a + 1\) , \( a\) , \( 1\) , \( 3 a - 4\) , \( -6\bigr] \) |
${y}^2+\left(a+1\right){x}{y}+{y}={x}^{3}+a{x}^{2}+\left(3a-4\right){x}-6$ |
| 22188.2-b1 |
22188.2-b |
$1$ |
$1$ |
\(\Q(\sqrt{-3}) \) |
$2$ |
$[0, 1]$ |
22188.2 |
\( 2^{2} \cdot 3 \cdot 43^{2} \) |
\( 2^{4} \cdot 3^{38} \cdot 43^{2} \) |
$1.88899$ |
$(-2a+1), (-7a+1), (7a-6), (2)$ |
0 |
$\mathsf{trivial}$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
✓ |
|
|
|
$4$ |
\( 2^{2} \) |
$1$ |
$0.076317390$ |
1.409979710 |
\( -\frac{9500554530751882177}{199908972324} \) |
\( \bigl[a + 1\) , \( a\) , \( 0\) , \( -44123 a + 44123\) , \( 3593277\bigr] \) |
${y}^2+\left(a+1\right){x}{y}={x}^{3}+a{x}^{2}+\left(-44123a+44123\right){x}+3593277$ |
| 22188.2-c1 |
22188.2-c |
$2$ |
$2$ |
\(\Q(\sqrt{-3}) \) |
$2$ |
$[0, 1]$ |
22188.2 |
\( 2^{2} \cdot 3 \cdot 43^{2} \) |
\( 2^{14} \cdot 3^{28} \cdot 43^{4} \) |
$1.88899$ |
$(-2a+1), (-7a+1), (7a-6), (2)$ |
0 |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
✓ |
|
$2$ |
2B |
$1$ |
\( 2^{3} \cdot 7 \) |
$1$ |
$0.136046132$ |
2.199295590 |
\( -\frac{230042158153417}{1131994839168} \) |
\( \bigl[1\) , \( 1\) , \( 0\) , \( -1276\) , \( 53584\bigr] \) |
${y}^2+{x}{y}={x}^{3}+{x}^{2}-1276{x}+53584$ |
| 22188.2-c2 |
22188.2-c |
$2$ |
$2$ |
\(\Q(\sqrt{-3}) \) |
$2$ |
$[0, 1]$ |
22188.2 |
\( 2^{2} \cdot 3 \cdot 43^{2} \) |
\( 2^{28} \cdot 3^{14} \cdot 43^{2} \) |
$1.88899$ |
$(-2a+1), (-7a+1), (7a-6), (2)$ |
0 |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
✓ |
|
$2$ |
2B |
$1$ |
\( 2^{2} \cdot 7 \) |
$1$ |
$0.272092264$ |
2.199295590 |
\( \frac{778510269523657}{1540767744} \) |
\( \bigl[1\) , \( 1\) , \( 0\) , \( -1916\) , \( 31440\bigr] \) |
${y}^2+{x}{y}={x}^{3}+{x}^{2}-1916{x}+31440$ |
| 22188.2-d1 |
22188.2-d |
$4$ |
$4$ |
\(\Q(\sqrt{-3}) \) |
$2$ |
$[0, 1]$ |
22188.2 |
\( 2^{2} \cdot 3 \cdot 43^{2} \) |
\( 2^{6} \cdot 3^{8} \cdot 43^{8} \) |
$1.88899$ |
$(-2a+1), (-7a+1), (7a-6), (2)$ |
0 |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
✓ |
|
$2$ |
2B |
$1$ |
\( 2^{3} \cdot 3 \) |
$1$ |
$0.373008811$ |
2.584280852 |
\( -\frac{3107661785857}{2215383048} \) |
\( \bigl[a\) , \( a - 1\) , \( 1\) , \( 303 a\) , \( -3175\bigr] \) |
${y}^2+a{x}{y}+{y}={x}^{3}+\left(a-1\right){x}^{2}+303a{x}-3175$ |
| 22188.2-d2 |
22188.2-d |
$4$ |
$4$ |
\(\Q(\sqrt{-3}) \) |
$2$ |
$[0, 1]$ |
22188.2 |
\( 2^{2} \cdot 3 \cdot 43^{2} \) |
\( 2^{24} \cdot 3^{2} \cdot 43^{2} \) |
$1.88899$ |
$(-2a+1), (-7a+1), (7a-6), (2)$ |
0 |
$\Z/4\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
✓ |
|
$2$ |
2B |
$1$ |
\( 2^{3} \cdot 3 \) |
$1$ |
$1.492035245$ |
2.584280852 |
\( \frac{1532808577}{528384} \) |
\( \bigl[a\) , \( a - 1\) , \( 1\) , \( 23 a\) , \( -39\bigr] \) |
${y}^2+a{x}{y}+{y}={x}^{3}+\left(a-1\right){x}^{2}+23a{x}-39$ |
| 22188.2-d3 |
22188.2-d |
$4$ |
$4$ |
\(\Q(\sqrt{-3}) \) |
$2$ |
$[0, 1]$ |
22188.2 |
\( 2^{2} \cdot 3 \cdot 43^{2} \) |
\( 2^{12} \cdot 3^{4} \cdot 43^{4} \) |
$1.88899$ |
$(-2a+1), (-7a+1), (7a-6), (2)$ |
0 |
$\Z/2\Z\oplus\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
✓ |
|
$2$ |
2Cs |
$1$ |
\( 2^{4} \cdot 3 \) |
$1$ |
$0.746017622$ |
2.584280852 |
\( \frac{4502751117697}{1065024} \) |
\( \bigl[a\) , \( a - 1\) , \( 1\) , \( 343 a\) , \( -2599\bigr] \) |
${y}^2+a{x}{y}+{y}={x}^{3}+\left(a-1\right){x}^{2}+343a{x}-2599$ |
| 22188.2-d4 |
22188.2-d |
$4$ |
$4$ |
\(\Q(\sqrt{-3}) \) |
$2$ |
$[0, 1]$ |
22188.2 |
\( 2^{2} \cdot 3 \cdot 43^{2} \) |
\( 2^{6} \cdot 3^{2} \cdot 43^{2} \) |
$1.88899$ |
$(-2a+1), (-7a+1), (7a-6), (2)$ |
0 |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
✓ |
|
$2$ |
2B |
$4$ |
\( 2 \cdot 3 \) |
$1$ |
$0.373008811$ |
2.584280852 |
\( \frac{18440127492397057}{1032} \) |
\( \bigl[a\) , \( a - 1\) , \( 1\) , \( 5503 a\) , \( -159463\bigr] \) |
${y}^2+a{x}{y}+{y}={x}^{3}+\left(a-1\right){x}^{2}+5503a{x}-159463$ |
| 22188.2-e1 |
22188.2-e |
$1$ |
$1$ |
\(\Q(\sqrt{-3}) \) |
$2$ |
$[0, 1]$ |
22188.2 |
\( 2^{2} \cdot 3 \cdot 43^{2} \) |
\( 2^{4} \cdot 3^{8} \cdot 43^{2} \) |
$1.88899$ |
$(-2a+1), (-7a+1), (7a-6), (2)$ |
$1$ |
$\mathsf{trivial}$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
✓ |
|
|
|
$1$ |
\( 2^{4} \) |
$0.031712238$ |
$2.705889273$ |
3.170708154 |
\( \frac{224434}{129} a + \frac{31132009}{13932} \) |
\( \bigl[1\) , \( -a - 1\) , \( 0\) , \( -6 a + 8\) , \( 4 a\bigr] \) |
${y}^2+{x}{y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(-6a+8\right){x}+4a$ |
| 22188.2-f1 |
22188.2-f |
$1$ |
$1$ |
\(\Q(\sqrt{-3}) \) |
$2$ |
$[0, 1]$ |
22188.2 |
\( 2^{2} \cdot 3 \cdot 43^{2} \) |
\( 2^{4} \cdot 3^{8} \cdot 43^{2} \) |
$1.88899$ |
$(-2a+1), (-7a+1), (7a-6), (2)$ |
$1$ |
$\mathsf{trivial}$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
✓ |
|
|
|
$1$ |
\( 2^{4} \) |
$0.031712238$ |
$2.705889273$ |
3.170708154 |
\( -\frac{224434}{129} a + \frac{55370881}{13932} \) |
\( \bigl[a\) , \( a + 1\) , \( a + 1\) , \( -8 a + 7\) , \( -6 a + 12\bigr] \) |
${y}^2+a{x}{y}+\left(a+1\right){y}={x}^{3}+\left(a+1\right){x}^{2}+\left(-8a+7\right){x}-6a+12$ |
| 22188.2-g1 |
22188.2-g |
$1$ |
$1$ |
\(\Q(\sqrt{-3}) \) |
$2$ |
$[0, 1]$ |
22188.2 |
\( 2^{2} \cdot 3 \cdot 43^{2} \) |
\( 2^{4} \cdot 3^{10} \cdot 43^{2} \) |
$1.88899$ |
$(-2a+1), (-7a+1), (7a-6), (2)$ |
$1$ |
$\mathsf{trivial}$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
✓ |
|
|
|
$1$ |
\( 2^{2} \cdot 5 \) |
$0.033607720$ |
$2.132623693$ |
3.310416574 |
\( -\frac{338608873}{41796} \) |
\( \bigl[a\) , \( 0\) , \( 1\) , \( 14 a\) , \( 22\bigr] \) |
${y}^2+a{x}{y}+{y}={x}^{3}+14a{x}+22$ |
| 22188.2-h1 |
22188.2-h |
$2$ |
$2$ |
\(\Q(\sqrt{-3}) \) |
$2$ |
$[0, 1]$ |
22188.2 |
\( 2^{2} \cdot 3 \cdot 43^{2} \) |
\( 2^{2} \cdot 3^{4} \cdot 43^{4} \) |
$1.88899$ |
$(-2a+1), (-7a+1), (7a-6), (2)$ |
$1$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
✓ |
|
$2$ |
2B |
$1$ |
\( 2^{4} \) |
$0.159052025$ |
$2.425033706$ |
3.563004244 |
\( \frac{56181887}{33282} \) |
\( \bigl[a\) , \( 0\) , \( 0\) , \( -8 a\) , \( 2\bigr] \) |
${y}^2+a{x}{y}={x}^{3}-8a{x}+2$ |
| 22188.2-h2 |
22188.2-h |
$2$ |
$2$ |
\(\Q(\sqrt{-3}) \) |
$2$ |
$[0, 1]$ |
22188.2 |
\( 2^{2} \cdot 3 \cdot 43^{2} \) |
\( 2^{4} \cdot 3^{2} \cdot 43^{2} \) |
$1.88899$ |
$(-2a+1), (-7a+1), (7a-6), (2)$ |
$1$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
✓ |
|
$2$ |
2B |
$1$ |
\( 2^{2} \) |
$0.318104051$ |
$4.850067413$ |
3.563004244 |
\( \frac{912673}{516} \) |
\( \bigl[a\) , \( 0\) , \( 0\) , \( 2 a\) , \( 0\bigr] \) |
${y}^2+a{x}{y}={x}^{3}+2a{x}$ |
| 22188.2-i1 |
22188.2-i |
$2$ |
$7$ |
\(\Q(\sqrt{-3}) \) |
$2$ |
$[0, 1]$ |
22188.2 |
\( 2^{2} \cdot 3 \cdot 43^{2} \) |
\( 2^{4} \cdot 3^{2} \cdot 43^{14} \) |
$1.88899$ |
$(-2a+1), (-7a+1), (7a-6), (2)$ |
$1$ |
$\mathsf{trivial}$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
✓ |
|
$7$ |
7B.1.3 |
$1$ |
\( 2^{2} \cdot 7^{2} \) |
$0.144128547$ |
$0.058551767$ |
3.819842511 |
\( -\frac{23769846831649063249}{3261823333284} \) |
\( \bigl[a + 1\) , \( -a\) , \( 0\) , \( -59901 a + 59901\) , \( -5648523\bigr] \) |
${y}^2+\left(a+1\right){x}{y}={x}^{3}-a{x}^{2}+\left(-59901a+59901\right){x}-5648523$ |
| 22188.2-i2 |
22188.2-i |
$2$ |
$7$ |
\(\Q(\sqrt{-3}) \) |
$2$ |
$[0, 1]$ |
22188.2 |
\( 2^{2} \cdot 3 \cdot 43^{2} \) |
\( 2^{28} \cdot 3^{14} \cdot 43^{2} \) |
$1.88899$ |
$(-2a+1), (-7a+1), (7a-6), (2)$ |
$1$ |
$\Z/7\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
✓ |
|
$7$ |
7B.1.1 |
$1$ |
\( 2^{2} \cdot 7^{2} \) |
$1.008899832$ |
$0.409862375$ |
3.819842511 |
\( \frac{444369620591}{1540767744} \) |
\( \bigl[a + 1\) , \( -a\) , \( 0\) , \( 159 a - 159\) , \( 1737\bigr] \) |
${y}^2+\left(a+1\right){x}{y}={x}^{3}-a{x}^{2}+\left(159a-159\right){x}+1737$ |
*The rank, regulator and analytic order of Ш are
not known for all curves in the database; curves for which these are
unknown will not appear in searches specifying one of these
quantities.