Learn more

The results below are complete, since the LMFDB contains all elliptic curves with conductor norm at most 150000 over imaginary quadratic fields with absolute discriminant 3

Note: The completeness Only modular elliptic curves are included

Refine search


Results (15 matches)

  displayed columns for results
Label Class Base field Conductor norm Rank Torsion CM Sato-Tate Regulator Period Leading coeff j-invariant Weierstrass coefficients Weierstrass equation
22188.2-a1 22188.2-a \(\Q(\sqrt{-3}) \) \( 2^{2} \cdot 3 \cdot 43^{2} \) $2$ $\mathsf{trivial}$ $\mathrm{SU}(2)$ $0.017084761$ $3.102903120$ 2.938243290 \( \frac{1685159}{8256} \) \( \bigl[a + 1\) , \( a\) , \( 1\) , \( 3 a - 4\) , \( -6\bigr] \) ${y}^2+\left(a+1\right){x}{y}+{y}={x}^{3}+a{x}^{2}+\left(3a-4\right){x}-6$
22188.2-b1 22188.2-b \(\Q(\sqrt{-3}) \) \( 2^{2} \cdot 3 \cdot 43^{2} \) 0 $\mathsf{trivial}$ $\mathrm{SU}(2)$ $1$ $0.076317390$ 1.409979710 \( -\frac{9500554530751882177}{199908972324} \) \( \bigl[a + 1\) , \( a\) , \( 0\) , \( -44123 a + 44123\) , \( 3593277\bigr] \) ${y}^2+\left(a+1\right){x}{y}={x}^{3}+a{x}^{2}+\left(-44123a+44123\right){x}+3593277$
22188.2-c1 22188.2-c \(\Q(\sqrt{-3}) \) \( 2^{2} \cdot 3 \cdot 43^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $0.136046132$ 2.199295590 \( -\frac{230042158153417}{1131994839168} \) \( \bigl[1\) , \( 1\) , \( 0\) , \( -1276\) , \( 53584\bigr] \) ${y}^2+{x}{y}={x}^{3}+{x}^{2}-1276{x}+53584$
22188.2-c2 22188.2-c \(\Q(\sqrt{-3}) \) \( 2^{2} \cdot 3 \cdot 43^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $0.272092264$ 2.199295590 \( \frac{778510269523657}{1540767744} \) \( \bigl[1\) , \( 1\) , \( 0\) , \( -1916\) , \( 31440\bigr] \) ${y}^2+{x}{y}={x}^{3}+{x}^{2}-1916{x}+31440$
22188.2-d1 22188.2-d \(\Q(\sqrt{-3}) \) \( 2^{2} \cdot 3 \cdot 43^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $0.373008811$ 2.584280852 \( -\frac{3107661785857}{2215383048} \) \( \bigl[a\) , \( a - 1\) , \( 1\) , \( 303 a\) , \( -3175\bigr] \) ${y}^2+a{x}{y}+{y}={x}^{3}+\left(a-1\right){x}^{2}+303a{x}-3175$
22188.2-d2 22188.2-d \(\Q(\sqrt{-3}) \) \( 2^{2} \cdot 3 \cdot 43^{2} \) 0 $\Z/4\Z$ $\mathrm{SU}(2)$ $1$ $1.492035245$ 2.584280852 \( \frac{1532808577}{528384} \) \( \bigl[a\) , \( a - 1\) , \( 1\) , \( 23 a\) , \( -39\bigr] \) ${y}^2+a{x}{y}+{y}={x}^{3}+\left(a-1\right){x}^{2}+23a{x}-39$
22188.2-d3 22188.2-d \(\Q(\sqrt{-3}) \) \( 2^{2} \cdot 3 \cdot 43^{2} \) 0 $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $0.746017622$ 2.584280852 \( \frac{4502751117697}{1065024} \) \( \bigl[a\) , \( a - 1\) , \( 1\) , \( 343 a\) , \( -2599\bigr] \) ${y}^2+a{x}{y}+{y}={x}^{3}+\left(a-1\right){x}^{2}+343a{x}-2599$
22188.2-d4 22188.2-d \(\Q(\sqrt{-3}) \) \( 2^{2} \cdot 3 \cdot 43^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $0.373008811$ 2.584280852 \( \frac{18440127492397057}{1032} \) \( \bigl[a\) , \( a - 1\) , \( 1\) , \( 5503 a\) , \( -159463\bigr] \) ${y}^2+a{x}{y}+{y}={x}^{3}+\left(a-1\right){x}^{2}+5503a{x}-159463$
22188.2-e1 22188.2-e \(\Q(\sqrt{-3}) \) \( 2^{2} \cdot 3 \cdot 43^{2} \) $1$ $\mathsf{trivial}$ $\mathrm{SU}(2)$ $0.031712238$ $2.705889273$ 3.170708154 \( \frac{224434}{129} a + \frac{31132009}{13932} \) \( \bigl[1\) , \( -a - 1\) , \( 0\) , \( -6 a + 8\) , \( 4 a\bigr] \) ${y}^2+{x}{y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(-6a+8\right){x}+4a$
22188.2-f1 22188.2-f \(\Q(\sqrt{-3}) \) \( 2^{2} \cdot 3 \cdot 43^{2} \) $1$ $\mathsf{trivial}$ $\mathrm{SU}(2)$ $0.031712238$ $2.705889273$ 3.170708154 \( -\frac{224434}{129} a + \frac{55370881}{13932} \) \( \bigl[a\) , \( a + 1\) , \( a + 1\) , \( -8 a + 7\) , \( -6 a + 12\bigr] \) ${y}^2+a{x}{y}+\left(a+1\right){y}={x}^{3}+\left(a+1\right){x}^{2}+\left(-8a+7\right){x}-6a+12$
22188.2-g1 22188.2-g \(\Q(\sqrt{-3}) \) \( 2^{2} \cdot 3 \cdot 43^{2} \) $1$ $\mathsf{trivial}$ $\mathrm{SU}(2)$ $0.033607720$ $2.132623693$ 3.310416574 \( -\frac{338608873}{41796} \) \( \bigl[a\) , \( 0\) , \( 1\) , \( 14 a\) , \( 22\bigr] \) ${y}^2+a{x}{y}+{y}={x}^{3}+14a{x}+22$
22188.2-h1 22188.2-h \(\Q(\sqrt{-3}) \) \( 2^{2} \cdot 3 \cdot 43^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $0.159052025$ $2.425033706$ 3.563004244 \( \frac{56181887}{33282} \) \( \bigl[a\) , \( 0\) , \( 0\) , \( -8 a\) , \( 2\bigr] \) ${y}^2+a{x}{y}={x}^{3}-8a{x}+2$
22188.2-h2 22188.2-h \(\Q(\sqrt{-3}) \) \( 2^{2} \cdot 3 \cdot 43^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $0.318104051$ $4.850067413$ 3.563004244 \( \frac{912673}{516} \) \( \bigl[a\) , \( 0\) , \( 0\) , \( 2 a\) , \( 0\bigr] \) ${y}^2+a{x}{y}={x}^{3}+2a{x}$
22188.2-i1 22188.2-i \(\Q(\sqrt{-3}) \) \( 2^{2} \cdot 3 \cdot 43^{2} \) $1$ $\mathsf{trivial}$ $\mathrm{SU}(2)$ $0.144128547$ $0.058551767$ 3.819842511 \( -\frac{23769846831649063249}{3261823333284} \) \( \bigl[a + 1\) , \( -a\) , \( 0\) , \( -59901 a + 59901\) , \( -5648523\bigr] \) ${y}^2+\left(a+1\right){x}{y}={x}^{3}-a{x}^{2}+\left(-59901a+59901\right){x}-5648523$
22188.2-i2 22188.2-i \(\Q(\sqrt{-3}) \) \( 2^{2} \cdot 3 \cdot 43^{2} \) $1$ $\Z/7\Z$ $\mathrm{SU}(2)$ $1.008899832$ $0.409862375$ 3.819842511 \( \frac{444369620591}{1540767744} \) \( \bigl[a + 1\) , \( -a\) , \( 0\) , \( 159 a - 159\) , \( 1737\bigr] \) ${y}^2+\left(a+1\right){x}{y}={x}^{3}-a{x}^{2}+\left(159a-159\right){x}+1737$
  displayed columns for results

  *The rank, regulator and analytic order of Ш are not known for all curves in the database; curves for which these are unknown will not appear in searches specifying one of these quantities.