Learn more

Refine search


Results (11 matches)

  displayed columns for results
Label Class Base field Conductor norm Rank Torsion CM Sato-Tate Regulator Period Leading coeff j-invariant Weierstrass coefficients Weierstrass equation
146692.2-a1 146692.2-a \(\Q(\sqrt{-3}) \) \( 2^{2} \cdot 7 \cdot 13^{2} \cdot 31 \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $0.257585578$ $0.551804301$ 3.282509488 \( \frac{10621452329}{10888192} a - \frac{7274546105}{10888192} \) \( \bigl[1\) , \( -a - 1\) , \( a + 1\) , \( 138 a - 44\) , \( 685 a + 155\bigr] \) ${y}^2+{x}{y}+\left(a+1\right){y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(138a-44\right){x}+685a+155$
146692.2-a2 146692.2-a \(\Q(\sqrt{-3}) \) \( 2^{2} \cdot 7 \cdot 13^{2} \cdot 31 \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $0.515171157$ $0.275902150$ 3.282509488 \( -\frac{6512659898044201}{3617942048} a + \frac{303261539125773}{452242756} \) \( \bigl[1\) , \( -a - 1\) , \( a + 1\) , \( 2538 a - 1164\) , \( 28909 a + 16187\bigr] \) ${y}^2+{x}{y}+\left(a+1\right){y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(2538a-1164\right){x}+28909a+16187$
146692.2-b1 146692.2-b \(\Q(\sqrt{-3}) \) \( 2^{2} \cdot 7 \cdot 13^{2} \cdot 31 \) $1$ $\mathsf{trivial}$ $\mathrm{SU}(2)$ $0.084213761$ $0.413568032$ 2.895555473 \( -\frac{27687863199645}{14019525436} a - \frac{39320031191761}{28039050872} \) \( \bigl[1\) , \( a - 1\) , \( 1\) , \( 54 a + 271\) , \( -2763 a + 1641\bigr] \) ${y}^2+{x}{y}+{y}={x}^{3}+\left(a-1\right){x}^{2}+\left(54a+271\right){x}-2763a+1641$
146692.2-b2 146692.2-b \(\Q(\sqrt{-3}) \) \( 2^{2} \cdot 7 \cdot 13^{2} \cdot 31 \) $1$ $\mathsf{trivial}$ $\mathrm{SU}(2)$ $0.252641283$ $0.137856010$ 2.895555473 \( \frac{20687422086138241443}{50480821535223919} a + \frac{113695097195902805459}{100961643070447838} \) \( \bigl[1\) , \( a - 1\) , \( 1\) , \( -206 a - 2199\) , \( 27717 a - 3795\bigr] \) ${y}^2+{x}{y}+{y}={x}^{3}+\left(a-1\right){x}^{2}+\left(-206a-2199\right){x}+27717a-3795$
146692.2-b3 146692.2-b \(\Q(\sqrt{-3}) \) \( 2^{2} \cdot 7 \cdot 13^{2} \cdot 31 \) $1$ $\mathsf{trivial}$ $\mathrm{SU}(2)$ $0.252641283$ $1.240704096$ 2.895555473 \( -\frac{1566729405}{3038} a + \frac{66816311}{3038} \) \( \bigl[1\) , \( a - 1\) , \( 1\) , \( 104 a - 34\) , \( -183 a - 239\bigr] \) ${y}^2+{x}{y}+{y}={x}^{3}+\left(a-1\right){x}^{2}+\left(104a-34\right){x}-183a-239$
146692.2-b4 146692.2-b \(\Q(\sqrt{-3}) \) \( 2^{2} \cdot 7 \cdot 13^{2} \cdot 31 \) $1$ $\mathsf{trivial}$ $\mathrm{SU}(2)$ $0.252641283$ $0.137856010$ 2.895555473 \( \frac{406635051366709052855}{2591082971745758} a + \frac{44028606239712586643}{1295541485872879} \) \( \bigl[1\) , \( a - 1\) , \( 1\) , \( -7296 a + 3701\) , \( -154103 a + 217381\bigr] \) ${y}^2+{x}{y}+{y}={x}^{3}+\left(a-1\right){x}^{2}+\left(-7296a+3701\right){x}-154103a+217381$
146692.2-b5 146692.2-b \(\Q(\sqrt{-3}) \) \( 2^{2} \cdot 7 \cdot 13^{2} \cdot 31 \) $1$ $\mathsf{trivial}$ $\mathrm{SU}(2)$ $0.252641283$ $0.137856010$ 2.895555473 \( -\frac{19926242340409933}{388864} a + \frac{18769373204677155}{777728} \) \( \bigl[1\) , \( a - 1\) , \( 1\) , \( 3614 a + 24016\) , \( -1825903 a + 1200467\bigr] \) ${y}^2+{x}{y}+{y}={x}^{3}+\left(a-1\right){x}^{2}+\left(3614a+24016\right){x}-1825903a+1200467$
146692.2-c1 146692.2-c \(\Q(\sqrt{-3}) \) \( 2^{2} \cdot 7 \cdot 13^{2} \cdot 31 \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $0.422296567$ $0.928062016$ 5.430566850 \( -\frac{295041609}{7187908} a + \frac{107809434}{1796977} \) \( \bigl[a\) , \( a\) , \( a + 1\) , \( -21 a + 13\) , \( -188 a + 73\bigr] \) ${y}^2+a{x}{y}+\left(a+1\right){y}={x}^{3}+a{x}^{2}+\left(-21a+13\right){x}-188a+73$
146692.2-c2 146692.2-c \(\Q(\sqrt{-3}) \) \( 2^{2} \cdot 7 \cdot 13^{2} \cdot 31 \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $0.844593135$ $0.464031008$ 5.430566850 \( -\frac{233519701564899}{2939577914} a + \frac{172304309837943}{2939577914} \) \( \bigl[a\) , \( a\) , \( a + 1\) , \( -191 a + 543\) , \( -3798 a - 45\bigr] \) ${y}^2+a{x}{y}+\left(a+1\right){y}={x}^{3}+a{x}^{2}+\left(-191a+543\right){x}-3798a-45$
146692.2-d1 146692.2-d \(\Q(\sqrt{-3}) \) \( 2^{2} \cdot 7 \cdot 13^{2} \cdot 31 \) 0 $\mathsf{trivial}$ $\mathrm{SU}(2)$ $1$ $0.239928512$ 2.216364664 \( \frac{354220679986287}{25761462272} a - \frac{497011551977149}{25761462272} \) \( \bigl[a + 1\) , \( -a\) , \( a\) , \( -136 a - 1281\) , \( 3822 a + 17758\bigr] \) ${y}^2+\left(a+1\right){x}{y}+a{y}={x}^{3}-a{x}^{2}+\left(-136a-1281\right){x}+3822a+17758$
146692.2-e1 146692.2-e \(\Q(\sqrt{-3}) \) \( 2^{2} \cdot 7 \cdot 13^{2} \cdot 31 \) 0 $\mathsf{trivial}$ $\mathrm{SU}(2)$ $1$ $1.174084672$ 5.422864813 \( \frac{8685387}{48608} a + \frac{17171919}{48608} \) \( \bigl[a\) , \( -1\) , \( 1\) , \( 21 a - 23\) , \( -19 a + 81\bigr] \) ${y}^2+a{x}{y}+{y}={x}^{3}-{x}^{2}+\left(21a-23\right){x}-19a+81$
  displayed columns for results

  *The rank, regulator and analytic order of Ш are not known for all curves in the database; curves for which these are unknown will not appear in searches specifying one of these quantities.