| Label |
Class |
Class size |
Class degree |
Base field |
Field degree |
Field signature |
Conductor |
Conductor norm |
Discriminant norm |
Root analytic conductor |
Bad primes |
Rank |
Torsion |
CM |
CM |
Sato-Tate |
$\Q$-curve |
Base change |
Semistable |
Potentially good |
Nonmax $\ell$ |
mod-$\ell$ images |
$Ш_{\textrm{an}}$ |
Tamagawa |
Regulator |
Period |
Leading coeff |
j-invariant |
Weierstrass coefficients |
Weierstrass equation |
| 120000.1-a1 |
120000.1-a |
$4$ |
$4$ |
\(\Q(\sqrt{-3}) \) |
$2$ |
$[0, 1]$ |
120000.1 |
\( 2^{6} \cdot 3 \cdot 5^{4} \) |
\( 2^{16} \cdot 3^{2} \cdot 5^{14} \) |
$2.88068$ |
$(-2a+1), (2), (5)$ |
0 |
$\Z/4\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
|
|
$2$ |
2B |
$1$ |
\( 2^{5} \) |
$1$ |
$0.696317377$ |
1.608076100 |
\( \frac{21296}{15} \) |
\( \bigl[0\) , \( -1\) , \( 0\) , \( 92\) , \( -188\bigr] \) |
${y}^2={x}^{3}-{x}^{2}+92{x}-188$ |
| 120000.1-a2 |
120000.1-a |
$4$ |
$4$ |
\(\Q(\sqrt{-3}) \) |
$2$ |
$[0, 1]$ |
120000.1 |
\( 2^{6} \cdot 3 \cdot 5^{4} \) |
\( 2^{20} \cdot 3^{4} \cdot 5^{16} \) |
$2.88068$ |
$(-2a+1), (2), (5)$ |
0 |
$\Z/2\Z\oplus\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
|
|
$2$ |
2Cs |
$4$ |
\( 2^{4} \) |
$1$ |
$0.348158688$ |
1.608076100 |
\( \frac{470596}{225} \) |
\( \bigl[0\) , \( -1\) , \( 0\) , \( -408\) , \( -1188\bigr] \) |
${y}^2={x}^{3}-{x}^{2}-408{x}-1188$ |
| 120000.1-a3 |
120000.1-a |
$4$ |
$4$ |
\(\Q(\sqrt{-3}) \) |
$2$ |
$[0, 1]$ |
120000.1 |
\( 2^{6} \cdot 3 \cdot 5^{4} \) |
\( 2^{22} \cdot 3^{2} \cdot 5^{20} \) |
$2.88068$ |
$(-2a+1), (2), (5)$ |
0 |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
|
|
$2$ |
2B |
$4$ |
\( 2^{3} \) |
$1$ |
$0.174079344$ |
1.608076100 |
\( \frac{136835858}{1875} \) |
\( \bigl[0\) , \( -1\) , \( 0\) , \( -3408\) , \( 76812\bigr] \) |
${y}^2={x}^{3}-{x}^{2}-3408{x}+76812$ |
| 120000.1-a4 |
120000.1-a |
$4$ |
$4$ |
\(\Q(\sqrt{-3}) \) |
$2$ |
$[0, 1]$ |
120000.1 |
\( 2^{6} \cdot 3 \cdot 5^{4} \) |
\( 2^{22} \cdot 3^{8} \cdot 5^{14} \) |
$2.88068$ |
$(-2a+1), (2), (5)$ |
0 |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
|
|
$2$ |
2B |
$4$ |
\( 2^{3} \) |
$1$ |
$0.174079344$ |
1.608076100 |
\( \frac{546718898}{405} \) |
\( \bigl[0\) , \( -1\) , \( 0\) , \( -5408\) , \( -151188\bigr] \) |
${y}^2={x}^{3}-{x}^{2}-5408{x}-151188$ |
| 120000.1-b1 |
120000.1-b |
$1$ |
$1$ |
\(\Q(\sqrt{-3}) \) |
$2$ |
$[0, 1]$ |
120000.1 |
\( 2^{6} \cdot 3 \cdot 5^{4} \) |
\( 2^{16} \cdot 3^{2} \cdot 5^{4} \) |
$2.88068$ |
$(-2a+1), (2), (5)$ |
$2$ |
$\mathsf{trivial}$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
|
|
$2$ |
2Cn |
$1$ |
\( 2^{3} \) |
$0.050574661$ |
$2.657582450$ |
4.966370047 |
\( \frac{5120}{3} \) |
\( \bigl[0\) , \( -1\) , \( 0\) , \( 7\) , \( -3\bigr] \) |
${y}^2={x}^{3}-{x}^{2}+7{x}-3$ |
| 120000.1-c1 |
120000.1-c |
$6$ |
$8$ |
\(\Q(\sqrt{-3}) \) |
$2$ |
$[0, 1]$ |
120000.1 |
\( 2^{6} \cdot 3 \cdot 5^{4} \) |
\( 2^{22} \cdot 3^{2} \cdot 5^{28} \) |
$2.88068$ |
$(-2a+1), (2), (5)$ |
$2$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
|
|
$2$ |
2B |
$1$ |
\( 2^{3} \) |
$7.547184459$ |
$0.076578751$ |
5.338909986 |
\( -\frac{27995042}{1171875} \) |
\( \bigl[0\) , \( -1\) , \( 0\) , \( -2008\) , \( -295988\bigr] \) |
${y}^2={x}^{3}-{x}^{2}-2008{x}-295988$ |
| 120000.1-c2 |
120000.1-c |
$6$ |
$8$ |
\(\Q(\sqrt{-3}) \) |
$2$ |
$[0, 1]$ |
120000.1 |
\( 2^{6} \cdot 3 \cdot 5^{4} \) |
\( 2^{20} \cdot 3^{16} \cdot 5^{14} \) |
$2.88068$ |
$(-2a+1), (2), (5)$ |
$2$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
|
|
$2$ |
2B |
$1$ |
\( 2^{4} \) |
$1.886796114$ |
$0.153157502$ |
5.338909986 |
\( \frac{54607676}{32805} \) |
\( \bigl[0\) , \( -1\) , \( 0\) , \( 1992\) , \( 6012\bigr] \) |
${y}^2={x}^{3}-{x}^{2}+1992{x}+6012$ |
| 120000.1-c3 |
120000.1-c |
$6$ |
$8$ |
\(\Q(\sqrt{-3}) \) |
$2$ |
$[0, 1]$ |
120000.1 |
\( 2^{6} \cdot 3 \cdot 5^{4} \) |
\( 2^{16} \cdot 3^{8} \cdot 5^{16} \) |
$2.88068$ |
$(-2a+1), (2), (5)$ |
$2$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
|
|
$2$ |
2Cs |
$1$ |
\( 2^{5} \) |
$1.886796114$ |
$0.306315004$ |
5.338909986 |
\( \frac{3631696}{2025} \) |
\( \bigl[0\) , \( -1\) , \( 0\) , \( -508\) , \( 1012\bigr] \) |
${y}^2={x}^{3}-{x}^{2}-508{x}+1012$ |
| 120000.1-c4 |
120000.1-c |
$6$ |
$8$ |
\(\Q(\sqrt{-3}) \) |
$2$ |
$[0, 1]$ |
120000.1 |
\( 2^{6} \cdot 3 \cdot 5^{4} \) |
\( 2^{20} \cdot 3^{4} \cdot 5^{20} \) |
$2.88068$ |
$(-2a+1), (2), (5)$ |
$2$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
|
|
$2$ |
2Cs |
$1$ |
\( 2^{4} \) |
$7.547184459$ |
$0.153157502$ |
5.338909986 |
\( \frac{868327204}{5625} \) |
\( \bigl[0\) , \( -1\) , \( 0\) , \( -5008\) , \( -133988\bigr] \) |
${y}^2={x}^{3}-{x}^{2}-5008{x}-133988$ |
| 120000.1-c5 |
120000.1-c |
$6$ |
$8$ |
\(\Q(\sqrt{-3}) \) |
$2$ |
$[0, 1]$ |
120000.1 |
\( 2^{6} \cdot 3 \cdot 5^{4} \) |
\( 2^{8} \cdot 3^{4} \cdot 5^{14} \) |
$2.88068$ |
$(-2a+1), (2), (5)$ |
$2$ |
$\Z/4\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
|
|
$2$ |
2B |
$1$ |
\( 2^{4} \) |
$1.886796114$ |
$0.612630008$ |
5.338909986 |
\( \frac{24918016}{45} \) |
\( \bigl[0\) , \( -1\) , \( 0\) , \( -383\) , \( 3012\bigr] \) |
${y}^2={x}^{3}-{x}^{2}-383{x}+3012$ |
| 120000.1-c6 |
120000.1-c |
$6$ |
$8$ |
\(\Q(\sqrt{-3}) \) |
$2$ |
$[0, 1]$ |
120000.1 |
\( 2^{6} \cdot 3 \cdot 5^{4} \) |
\( 2^{22} \cdot 3^{2} \cdot 5^{16} \) |
$2.88068$ |
$(-2a+1), (2), (5)$ |
$2$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
|
|
$2$ |
2B |
$1$ |
\( 2^{3} \) |
$7.547184459$ |
$0.076578751$ |
5.338909986 |
\( \frac{1770025017602}{75} \) |
\( \bigl[0\) , \( -1\) , \( 0\) , \( -80008\) , \( -8683988\bigr] \) |
${y}^2={x}^{3}-{x}^{2}-80008{x}-8683988$ |
| 120000.1-d1 |
120000.1-d |
$2$ |
$2$ |
\(\Q(\sqrt{-3}) \) |
$2$ |
$[0, 1]$ |
120000.1 |
\( 2^{6} \cdot 3 \cdot 5^{4} \) |
\( 2^{20} \cdot 3^{6} \cdot 5^{6} \) |
$2.88068$ |
$(-2a+1), (2), (5)$ |
0 |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
|
|
$2$ |
2B |
$1$ |
\( 2^{3} \) |
$1$ |
$1.123833754$ |
2.595382882 |
\( \frac{27436}{27} \) |
\( \bigl[0\) , \( -1\) , \( 0\) , \( 32\) , \( -68\bigr] \) |
${y}^2={x}^{3}-{x}^{2}+32{x}-68$ |
| 120000.1-d2 |
120000.1-d |
$2$ |
$2$ |
\(\Q(\sqrt{-3}) \) |
$2$ |
$[0, 1]$ |
120000.1 |
\( 2^{6} \cdot 3 \cdot 5^{4} \) |
\( 2^{22} \cdot 3^{12} \cdot 5^{6} \) |
$2.88068$ |
$(-2a+1), (2), (5)$ |
0 |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
|
|
$2$ |
2B |
$4$ |
\( 2^{2} \) |
$1$ |
$0.561916877$ |
2.595382882 |
\( \frac{2060602}{729} \) |
\( \bigl[0\) , \( -1\) , \( 0\) , \( -168\) , \( -468\bigr] \) |
${y}^2={x}^{3}-{x}^{2}-168{x}-468$ |
| 120000.1-e1 |
120000.1-e |
$1$ |
$1$ |
\(\Q(\sqrt{-3}) \) |
$2$ |
$[0, 1]$ |
120000.1 |
\( 2^{6} \cdot 3 \cdot 5^{4} \) |
\( 2^{16} \cdot 3^{14} \cdot 5^{20} \) |
$2.88068$ |
$(-2a+1), (2), (5)$ |
0 |
$\mathsf{trivial}$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
|
|
$2$ |
2Cn |
$4$ |
\( 2^{3} \) |
$1$ |
$0.097862287$ |
3.616052353 |
\( -\frac{8780800}{2187} \) |
\( \bigl[0\) , \( a\) , \( 0\) , \( -5833 a + 5833\) , \( 207037\bigr] \) |
${y}^2={x}^{3}+a{x}^{2}+\left(-5833a+5833\right){x}+207037$ |
| 120000.1-f1 |
120000.1-f |
$1$ |
$1$ |
\(\Q(\sqrt{-3}) \) |
$2$ |
$[0, 1]$ |
120000.1 |
\( 2^{6} \cdot 3 \cdot 5^{4} \) |
\( 2^{16} \cdot 3^{14} \cdot 5^{8} \) |
$2.88068$ |
$(-2a+1), (2), (5)$ |
$1$ |
$\mathsf{trivial}$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
|
|
$2$ |
2Cn |
$1$ |
\( 2^{3} \cdot 3 \cdot 7 \) |
$0.015833389$ |
$0.489311437$ |
3.005854131 |
\( -\frac{8780800}{2187} \) |
\( \bigl[0\) , \( 1\) , \( 0\) , \( -233\) , \( 1563\bigr] \) |
${y}^2={x}^{3}+{x}^{2}-233{x}+1563$ |
| 120000.1-g1 |
120000.1-g |
$2$ |
$2$ |
\(\Q(\sqrt{-3}) \) |
$2$ |
$[0, 1]$ |
120000.1 |
\( 2^{6} \cdot 3 \cdot 5^{4} \) |
\( 2^{20} \cdot 3^{6} \cdot 5^{18} \) |
$2.88068$ |
$(-2a+1), (2), (5)$ |
$1$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
|
|
$2$ |
2B |
$1$ |
\( 2^{3} \cdot 3 \) |
$1.655400181$ |
$0.224766750$ |
5.155676752 |
\( \frac{27436}{27} \) |
\( \bigl[0\) , \( -a\) , \( 0\) , \( 792 a - 792\) , \( -6912\bigr] \) |
${y}^2={x}^{3}-a{x}^{2}+\left(792a-792\right){x}-6912$ |
| 120000.1-g2 |
120000.1-g |
$2$ |
$2$ |
\(\Q(\sqrt{-3}) \) |
$2$ |
$[0, 1]$ |
120000.1 |
\( 2^{6} \cdot 3 \cdot 5^{4} \) |
\( 2^{22} \cdot 3^{12} \cdot 5^{18} \) |
$2.88068$ |
$(-2a+1), (2), (5)$ |
$1$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
|
|
$2$ |
2B |
$1$ |
\( 2^{3} \cdot 3 \) |
$3.310800362$ |
$0.112383375$ |
5.155676752 |
\( \frac{2060602}{729} \) |
\( \bigl[0\) , \( -a\) , \( 0\) , \( -4208 a + 4208\) , \( -66912\bigr] \) |
${y}^2={x}^{3}-a{x}^{2}+\left(-4208a+4208\right){x}-66912$ |
| 120000.1-h1 |
120000.1-h |
$8$ |
$16$ |
\(\Q(\sqrt{-3}) \) |
$2$ |
$[0, 1]$ |
120000.1 |
\( 2^{6} \cdot 3 \cdot 5^{4} \) |
\( 2^{16} \cdot 3 \cdot 5^{12} \) |
$2.88068$ |
$(-2a+1), (2), (5)$ |
$1$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
$2$ |
2B |
$1$ |
\( 2^{2} \) |
$3.331860695$ |
$0.727069403$ |
5.594510179 |
\( \frac{73696}{3} a - \frac{624368}{3} \) |
\( \bigl[0\) , \( 1\) , \( 0\) , \( 125 a + 142\) , \( -1125 a + 1538\bigr] \) |
${y}^2={x}^{3}+{x}^{2}+\left(125a+142\right){x}-1125a+1538$ |
| 120000.1-h2 |
120000.1-h |
$8$ |
$16$ |
\(\Q(\sqrt{-3}) \) |
$2$ |
$[0, 1]$ |
120000.1 |
\( 2^{6} \cdot 3 \cdot 5^{4} \) |
\( 2^{16} \cdot 3 \cdot 5^{12} \) |
$2.88068$ |
$(-2a+1), (2), (5)$ |
$1$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
$2$ |
2B |
$1$ |
\( 2^{2} \) |
$3.331860695$ |
$0.727069403$ |
5.594510179 |
\( -\frac{73696}{3} a - \frac{550672}{3} \) |
\( \bigl[0\) , \( 1\) , \( 0\) , \( -125 a + 267\) , \( 1125 a + 413\bigr] \) |
${y}^2={x}^{3}+{x}^{2}+\left(-125a+267\right){x}+1125a+413$ |
| 120000.1-h3 |
120000.1-h |
$8$ |
$16$ |
\(\Q(\sqrt{-3}) \) |
$2$ |
$[0, 1]$ |
120000.1 |
\( 2^{6} \cdot 3 \cdot 5^{4} \) |
\( 2^{22} \cdot 3^{16} \cdot 5^{12} \) |
$2.88068$ |
$(-2a+1), (2), (5)$ |
$1$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
|
|
$2$ |
2B |
$1$ |
\( 2^{6} \) |
$0.832965173$ |
$0.181767350$ |
5.594510179 |
\( \frac{207646}{6561} \) |
\( \bigl[0\) , \( 1\) , \( 0\) , \( 392\) , \( -21712\bigr] \) |
${y}^2={x}^{3}+{x}^{2}+392{x}-21712$ |
| 120000.1-h4 |
120000.1-h |
$8$ |
$16$ |
\(\Q(\sqrt{-3}) \) |
$2$ |
$[0, 1]$ |
120000.1 |
\( 2^{6} \cdot 3 \cdot 5^{4} \) |
\( 2^{8} \cdot 3^{2} \cdot 5^{12} \) |
$2.88068$ |
$(-2a+1), (2), (5)$ |
$1$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
|
|
$2$ |
2Cs |
$1$ |
\( 2^{4} \) |
$1.665930347$ |
$1.454138807$ |
5.594510179 |
\( \frac{2048}{3} \) |
\( \bigl[0\) , \( 1\) , \( 0\) , \( 17\) , \( 38\bigr] \) |
${y}^2={x}^{3}+{x}^{2}+17{x}+38$ |
| 120000.1-h5 |
120000.1-h |
$8$ |
$16$ |
\(\Q(\sqrt{-3}) \) |
$2$ |
$[0, 1]$ |
120000.1 |
\( 2^{6} \cdot 3 \cdot 5^{4} \) |
\( 2^{16} \cdot 3^{4} \cdot 5^{12} \) |
$2.88068$ |
$(-2a+1), (2), (5)$ |
$1$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
|
|
$2$ |
2Cs |
$1$ |
\( 2^{6} \) |
$0.832965173$ |
$0.727069403$ |
5.594510179 |
\( \frac{35152}{9} \) |
\( \bigl[0\) , \( 1\) , \( 0\) , \( -108\) , \( 288\bigr] \) |
${y}^2={x}^{3}+{x}^{2}-108{x}+288$ |
| 120000.1-h6 |
120000.1-h |
$8$ |
$16$ |
\(\Q(\sqrt{-3}) \) |
$2$ |
$[0, 1]$ |
120000.1 |
\( 2^{6} \cdot 3 \cdot 5^{4} \) |
\( 2^{20} \cdot 3^{8} \cdot 5^{12} \) |
$2.88068$ |
$(-2a+1), (2), (5)$ |
$1$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
|
|
$2$ |
2Cs |
$1$ |
\( 2^{6} \) |
$1.665930347$ |
$0.363534701$ |
5.594510179 |
\( \frac{1556068}{81} \) |
\( \bigl[0\) , \( 1\) , \( 0\) , \( -608\) , \( -5712\bigr] \) |
${y}^2={x}^{3}+{x}^{2}-608{x}-5712$ |
| 120000.1-h7 |
120000.1-h |
$8$ |
$16$ |
\(\Q(\sqrt{-3}) \) |
$2$ |
$[0, 1]$ |
120000.1 |
\( 2^{6} \cdot 3 \cdot 5^{4} \) |
\( 2^{20} \cdot 3^{2} \cdot 5^{12} \) |
$2.88068$ |
$(-2a+1), (2), (5)$ |
$1$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
|
|
$2$ |
2B |
$1$ |
\( 2^{4} \) |
$1.665930347$ |
$0.363534701$ |
5.594510179 |
\( \frac{28756228}{3} \) |
\( \bigl[0\) , \( 1\) , \( 0\) , \( -1608\) , \( 24288\bigr] \) |
${y}^2={x}^{3}+{x}^{2}-1608{x}+24288$ |
| 120000.1-h8 |
120000.1-h |
$8$ |
$16$ |
\(\Q(\sqrt{-3}) \) |
$2$ |
$[0, 1]$ |
120000.1 |
\( 2^{6} \cdot 3 \cdot 5^{4} \) |
\( 2^{22} \cdot 3^{4} \cdot 5^{12} \) |
$2.88068$ |
$(-2a+1), (2), (5)$ |
$1$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
|
|
$2$ |
2B |
$1$ |
\( 2^{4} \) |
$3.331860695$ |
$0.181767350$ |
5.594510179 |
\( \frac{3065617154}{9} \) |
\( \bigl[0\) , \( 1\) , \( 0\) , \( -9608\) , \( -365712\bigr] \) |
${y}^2={x}^{3}+{x}^{2}-9608{x}-365712$ |
| 120000.1-i1 |
120000.1-i |
$1$ |
$1$ |
\(\Q(\sqrt{-3}) \) |
$2$ |
$[0, 1]$ |
120000.1 |
\( 2^{6} \cdot 3 \cdot 5^{4} \) |
\( 2^{16} \cdot 3^{2} \cdot 5^{16} \) |
$2.88068$ |
$(-2a+1), (2), (5)$ |
$1$ |
$\mathsf{trivial}$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
|
|
$2$ |
2Cn |
$1$ |
\( 2^{3} \cdot 3 \) |
$0.209633012$ |
$0.531516490$ |
6.175711853 |
\( \frac{5120}{3} \) |
\( \bigl[0\) , \( -a\) , \( 0\) , \( 167 a - 167\) , \( -37\bigr] \) |
${y}^2={x}^{3}-a{x}^{2}+\left(167a-167\right){x}-37$ |
*The rank, regulator and analytic order of Ш are
not known for all curves in the database; curves for which these are
unknown will not appear in searches specifying one of these
quantities.